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THE BIGGER PICTURE Spiking neural networks (SNNs) represent a promising, brain-inspired paradigm for
artificial intelligence, offering potential for greater energy efficiency and temporal processing capabilities.
However, a key challenge lies in developing effective learning rules that are both biologically plausible and
computationally powerful. Traditional two-factor rules, such as spike-timing-dependent plasticity (STDP),
often fall short in complex learning scenarios because they lack a mechanism for integrating global feedback,
such as reward signals. This perspective provides a comprehensive overview of three-factor learning rules,
which address this limitation by incorporating a third, neuromodulatory signal. This signal, analogous to the
function of dopamine in the brain, modulates synaptic plasticity based on global information, thereby facil-
itating more effective credit assignment. By reviewing the state of the art from a machine learning perspec-
tive, we bridge theoretical neuroscience with practical Al applications.

We survey the theoretical foundations, analyze various algorithmic implementations, and explore the signif-
icant impact of these rules on reinforcement learning and neuromorphic computing. This synthesis highlights
how three-factor learning is not just enhancing the biological realism of SNNs but also unlocking new capa-
bilities for creating more adaptive and robust intelligent systems. By showing current trends and future direc-
tions, we aim to accelerate the convergence of neuroscience and Al, paving the way for next-generation
learning algorithms.

SUMMARY

Three-factor learning rules in spiking neural networks (SNNs) have emerged as a crucial extension of tradi-
tional Hebbian learning and spike-timing-dependent plasticity (STDP), incorporating neuromodulatory sig-
nals to improve adaptation and learning efficiency. These mechanisms enhance biological plausibility and
facilitate improved credit assignment in artificial neural systems. This paper considers this topic from a ma-
chine learning perspective, providing an overview of recent advances in three-factor learning and discussing
theoretical foundations, algorithmic implementations, and their relevance to reinforcement learning and neu-
romorphic computing. In addition, we explore interdisciplinary approaches, scalability challenges, and po-
tential applications in robotics, cognitive modeling, and artificial intelligence (Al) systems. Finally, we high-
light key research gaps and propose future directions for bridging the gap between neuroscience and Al.

INTRODUCTION in a time-sensitive manner, allowing them to model temporal pat-

terns and perform energy-efficient computation.>* Despite
Inrecent years, spiking neural networks (SNNs) have emergedas  these advantages, many challenges remain in the development
a promising paradigm in artificial intelligence (Al), inspired by the  of efficient learning rules for SNNs, particularly in scaling these
way biological neurons communicate through discrete spikes.’>  models to complex real-world applications®’ and developing
Unlike traditional artificial neural networks (ANNs), SNNs operate  |earning algorithms that fully exploit their proper‘(ies.8
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Neurobiology
(biological inspiration)

The fundamental biologically inspired learning rule is spike-
timing-dependent plasticity (STDP),” where synaptic weights
are modified based on the temporal coincidence of incoming
presynaptic and generated postsynaptic spikes at the neuron.
An extension of STDP and the main topic of this perspective is
the three-factor learning rule, which incorporates an additional
modulatory signal, often representing neuromodulators such
as dopamine.'®~'? This third factor plays a crucial role in guiding
plasticity by integrating global contextual information, allowing
the network to learn both reward signals and environmental
feedback.'®'*

SNN research is a complex domain that operates at the inter-
section of electronics, computer science, neurobiology, and ma-
chine learning (ML), as illustrated in Figure 1. Each of these fields
contributes essential foundational principles for SNN develop-
ment: electronics enables the design of neuromorphic hardware,
computer science provides programming frameworks and scal-
able implementations, and neurobiology introduces knowledge
about principles of biological learning mechanisms, which ML
implements and optimizes.

Importantly, we acknowledge that “computer science” is a
broad discipline that encompasses many areas, including algo-
rithm design (which overlaps with ML) and hardware-related as-
pects (which are foundational to electronics). In the context of
this perspective, and as visually represented in Figure 1, our
use of the term “computer science” is specifically narrowed to
its role in providing software frameworks and addressing
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Figure 1. Spiking neural network domain
and its key components, emphasizing the
interdisciplinary nature required to advance
the field

Three-factor learning rules draw heavily from
neurobiology for their inspiration (e.g., neuro-
modulatory signals) and are largely implemented
within the machine learning subdomain. Further-
more, their ultimate practical deployment relies on
advancements in computer science (software
frameworks and scalability) and electronics (neu-
romorphic hardware). In our work, we focus
explicitly on the highlighted subdomain: machine
learning.

scalability challenges for SNNs. This
perspective allows us to distinguish be-
tween the principles of biological inspira-
tion, the implementation of learning algo-
rithms, the development of physical
hardware, and the critical software and
computational considerations necessary
to make SNNs practically deployable.

Integration of these diverse disciplines
into a cohesive framework remains a
significant challenge. Differences in meth-
odologies, terminology, and research
priorities often create gaps between
theoretical neuroscience, computational
modeling, and hardware implementa-
tions. ML, while central to modern ad-
vancements, must balance biological
plausibility, computational efficiency,
and hardware feasibility to create SNN models that are both func-
tionally powerful and practically deployable. Figure 1 visually rep-
resents this complexity, highlighting that while ML is a dominant
force, it cannot operate in isolation from the other three fields.

Consequently, this paper aims to provide a review of the state
of three-factor learning from an ML perspective. In parallel, we
want to emphasize the complexity of the discipline and the
necessary cross-domain research collaboration to properly
merge knowledge from all the fields shown in Figure 1. To
achieve this, a series of papers were analyzed, highlighting the
following:

(1) Interdisciplinary perspectives: this review explores three-
factor learning in SNNs from both theoretical and practical
viewpoints, highlighting the convergence of neuroscience
and Al.'>"6

Neuromodulatory mechanisms: it emphasizes how the
third factor, global modulatory signals such as dopamine,
can steer synaptic changes beyond standard STDP,
improving adaptive behaviors and learning efficacy.'”'®
(3) Cognitive modeling and robotics: the discussion covers
real-world implications, showcasing how three-factor
learning enables robust, context-aware SNN applications
in tasks ranging from decision-making to autonomous
navigation.'®*°

Scalability and encoding strategies: it addresses key
challenges in scaling three-factor learning to larger
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Figure 2. The general overview of the three-factor learning principle demonstrates how synaptic weights are modified based on local activity

and the influence of a third factor

This third factor is crucial for integrating contextual or reward-based information, which serves as a key enhancement over standard Hebbian learning and spike-
timing-dependent plasticity in spiking neural networks (SNNs). This approach constitutes a high-level method for developing training algorithms that utilize

globally modulated local plasticity rules within SNN systems.

networks, including computational constraints, diverse
spike-encoding approaches, and the need for efficient
hardware support.”’??

(5) Future opportunities: finally, it describes promising ave-
nues for cross-domain research, bridging the gaps be-
tween theoretical models and applied technologies to
further advance three-factor learning in SNN.'">%

In addition to summarizing current advances, this paper iden-
tifies research gaps, offering recommendations for future direc-
tions that address these limitations through interdisciplinary syn-
thesis. Due to the fact that three-factor learning and SNNs are
still part of a widely unexplored and emerging discipline, our re-
view approach does not strictly conform to any systematic re-
view methodologies, such as the PRISMA or Kitchenham guide-
lines.?*?° In the following sections, we present and evaluate
various categories that highlight different aspects of the re-
viewed papers. The categorization we propose is inherently
approximate, as the boundaries between categories are often
indistinct and overlap. Nevertheless, this classification repre-
sents our best effort to introduce a structured framework for
reasoning about this highly heterogeneous, rapidly evolving,
and still-nascent field.

THEORETICAL FOUNDATIONS OF THREE-FACTOR
LEARNING

The concept of three-factor learning is presented in Figure 2,
with its roots appealing to biological neural mechanisms. We
seek to clarify this mapping by detailing how specific neurobio-
logical mechanisms, such as the roles of various neuromodula-

tors and the dynamics of synaptic plasticity, are translated into
the algorithmic design and functional improvements observed
in SNNs.

In the human brain, learning is not solely driven by local synap-
tic activity but is heavily influenced by global signals, such as
neuromodulators: dopamine, serotonin, and acetylcholine.”*°
These signals regulate synaptic plasticity, allowing the brain to
adapt based on rewards, motivation, and contextual informa-
tion."??” A visualization of this rule is shown in Figure 2.

Research in neuroscience has shown that STDP is insufficient
to fully explain complex learning behaviors.'%?® The introduction
of a third factor in learning models aligns with the findings on how
global neuromodulatory systems interact with local synaptic pro-
cesses. For example, dopamine has been linked to reward-
based learning, playing a critical role in the reinforcement
learning (RL) mechanisms observed in biological systems.?**°
This inspiration has led to the development of computational
models that attempt to replicate these dynamics in artificial
SNNs'**' by combining various algorithmic implementations
of local learning rules, such as STDP, with third-factor signals,
carrying information about the global state of the neuronal
system.

The concept of three-factor learning has evolved over several
decades and is shaped by both theoretical and experimental ad-
vances. Early research on synaptic plasticity emphasized two-
factor models, such as Hebbian learning and STDP.%'® How-
ever, these models faced limitations in explaining reward-driven
behaviors and long-term adaptations observed in biological
systems.'”*?

In the late twentieth century, neuroscientists began to uncover
the role of neuromodulators, such as dopamine, in RL.**** The
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discovery of dopamine involvement in reward prediction errors
led to the formulation of models that incorporated an additional
global factor in synaptic updates.'®*® These models demon-
strated improved learning capabilities in both simulations and
empirical studies.”*®

By the early 2000s, the computational neuroscience and ML
communities started to converge on the importance of three-fac-
tor learning. Research focused on developing algorithms that
balance local synaptic updates with global feedback signals, re-
sulting in enhanced performance for tasks that require long-term
planning, decision-making, and contextual adaptation.zt37
Today, three-factor learning is recognized as an important
component in bridging the gap between biological plausibility
and artificial learning systems.’"+*®

Currently, the field of three-factor learning in SNNs is charac-
terized by a growing consensus on the importance of integrating
local and global learning signals.'®*° Researchers have devel-
oped various algorithms that take advantage of neuromodula-
tory influences to improve network adaptability and learning ef-
ficiency.®*° These advancements have contributed to
improved performance in tasks requiring temporal memory,
reward-based learning, and complex decision-making.*®*'

Experimental studies have shown that incorporating three-
factor learning mechanisms can enhance the stability of network
dynamics.'®“? This is particularly important in tasks where net-
works must balance exploration and exploitation or operate un-
der delayed reward conditions."®*® Computational models how
commonly simulate neuromodulatory effects, enabling more
biologically plausible learning processes.***°

Despite these improvements, several challenges remain. Scal-
ability for large networks, the design of efficient hardware plat-
forms, and the use of real-world datasets are areas where further
research is needed.”®*” Furthermore, there is ongoing work to
unify disparate approaches under a cohesive theoretical frame-
work that connects biological mechanisms with artificial imple-
mentations.*®*° As a result, current research is focused on
cross-disciplinary efforts that aim to refine both the theoretical un-
derstanding and practical applications of three-factor learning.’"

Neuromodulatory influence on synaptic plasticity
Neuromodulation plays a crucial role in synaptic plasticity by
integrating intrinsic and extrinsic signals that affect neuronal in-
teractions and learning dynamics. In this section, we will
formalize the learning rules discussed and show how synapse
modulation could be manifested on the basis of insights from
neuroscience.

STDP and effects of third-factor modulation

The STDP can be regarded as an application of Hebb’s postu-
late,® worded as “neurons that fire together, wire together.”
This intuitive statement indicates that synapses for which pre-
synaptic and postsynaptic spiking activity coincide temporally
result in a synaptic weight change:

—At/z,
Aw; = {e , At>0

et At<0’ (Equation 1)

where Aw; is the change in synaptic weight at time t, At = fo5; —
tore is the timing difference between pre- and postsynaptic
spikes, and z, and z_ are time constants that control the decay
of the STDP window.
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Thus, if presynaptic spikes directly precede postsynaptic
spikes, we observe long-term potentiation (LTP), resulting in an
increase in synaptic weight. If the opposite is true, long-term
depression (LTD) occurs, and the synaptic weight decreases.
The shape of LTD and LTP windows is controlled by the hyper-
parameter z.

In general, we can simplify the above equation as a function of
presynaptic and postsynaptic spikes:

Aw; = H(tpre, toost), (Equation 2)

where H(:) is a function governing synaptic plasticity. The intro-
duction of the third factor extends the STDP rule in the following
form:

Aw; = H(tpre>tpost>gt)7 (Equation 3)

where g is the modulatory signal affecting the neuron at time t.
This third-factor signal can broadly influence the dynamics of
base synaptic plasticity.”® Based on neurobiological knowl-
edge,'? synaptic neuromodulation can induce effects such as
amplifying the weight change, reversing the STPD window
(swapping LTD with LTP on the timescale), changing the widths
of the LTP and LTD windows, or even gating the occurrence of a
synaptic weight modification. Visualization of these exemplary
effects can be seen in Figure 3.

Spatial and temporal aspects of third-factor modulation
One of the fundamental problems with respect to the use of
three-factor learning rules is the spatial and temporal aspects
of modulatory signal effectiveness. The relationships between
neuromodulators in these domains are notoriously complex
and difficult to observe in biological systems.?® Although the
temporal properties of modulatory signals have already been
incorporated into the discussed equations, spatial properties
should also be included. Thus, we refer to the concepts of
intrinsic and extrinsic neuromodulation, which are graphically
described in Figure 4.

Intrinsic neuromodulation

Intrinsic neuromodulatory signals are exchanged between neu-
rons within the same neuronal circuit. Neurons are considered
to be within the same local network if they coincide®® in one of
the following ways.

(1) Spatially, when they are physically close to each other
within a specific region of the brain or a neural circuit.
Their proximity allows for direct and rapid communica-
tion, often forming dense local connections.*’
Functionally, when they work together to perform a
specific task or contribute to a common computation.
They might be located in different physical locations
but are interconnected and co-activated during partic-
ular brain activities, such as processing a specific
type of sensory input or generating a certain motor
output.”’

Morphologically, when they have similar structural char-
acteristics, such as their shape, dendritic branching pat-
terns, or axonal projections. Neurons with similar
morphology often have similar physiological properties
and connectivity patterns, leading them to be part of the
same functional unit or local circuit.””
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Figure 3. Possible influences of third factor
on spike-timing-dependent plasticity
learning rule
(A) This plot shows baseline spike-timing-depen-
dent plasticity (STDP), where synaptic weight
change (Aw) depends on the relative timing (At) of
AN pre- and postsynaptic spikes.
DN (B) This plot illustrates reversed STDP, where the

LTD and LTP polarities are flipped.

(C) This plot demonstrates STDP shape modula-
tion, where neuromodulatory factors influence
the temporal profile of plasticity, modifying the
learning window width. This highlights the
numerous possibilities for how the third factor can
influence local learning rules when designing

0 0
At

) training algorithms for spiking neural networks
(SNNs). By modulating the STDP window, the third
factor (representing signals like dopamine) en-

ables SNNs to exhibit more complex and biologically plausible learning behaviors, such as reward-modulated plasticity or context-dependent learning, which are

essential for tasks in reinforcement learning and cognitive modeling.

It can be said that intrinsic neuromodulation serves as a
“memory” that adjusts the dynamics of the local network based
on its recent and current activity.>® An intrinsic neuromodulatory
signal can be described as

g™ = f (N;, Nf,s;""), (Equation 4)
where f,., describes how the state S™ of the internal network
determines the local neuromodulatory effect between neurons
N and NP at time t.

Extrinsic neuromodulation

Signals from external neural networks influence other circuits by
providing information on their ongoing activity.>* The modulatory
signal that affects a population of neurons P at time t can be
defined as

gte)(t = ext(Pt:SteXt)7

where S is a state of the external neuronal circuit.

Extended synaptic plasticity function

Based on the concepts discussed so far, we can formulate a
more detailed model for synaptic plasticity, which incorporates
weighted contributions from different factors, as well as spatial
and temporal properties of all signals influencing plasticity of a
given synapse.

(Equation 5)

intr

AWt = H(tpre7tpostvgt EXt)

» 9¢

This formulation highlights how intrinsic and extrinsic neuro-
modulatory factors contribute to synaptic plasticity, ultimately
shaping learning and adaptive behaviors in neural networks.
We note that the presented equations can be further extended
and that their presented derivation is not exhaustive due to the
complexity of the plasticity phenomena.

(Equation 6)

A note on backpropagation through time

While three-factor learning rules offer a biologically plausible
approach to training SNNs, it is important to acknowledge the
role of backpropagation through time (BPTT) based on surrogate
gradients.®*>° Both of those topics are extensive and beyond
the scope of this perspective, yet we will briefly describe them
to provide an overview of the problems encountered when
training SNNs and their relationship with biologically plausible

learning methods. The surrogate gradient method enables
gradient-based learning in SNNs by approximating neuron
spiking activity with a continuous function, which allows error
backpropagation.®® BPTT enables one to perform backpropaga-
tion in the temporal domain, which is inherent in SNNs. The com-
bination of these methods allows for effective training of deep
SNN architectures with the well-known approaches established
in deep learning research. Furthermore, the performance
achieved when using them is robust, closely compared to that
observed with classic deep neural networks.? Recent empirical
studies demonstrate that BPTT, combined with surrogate
gradient methods, has achieved high performance across a
wide spectrum of tasks, benefiting from optimized software
and hardware support.>” However, BPTT in its standard form,
based on direct derivative computation over time, faces several
challenges. Firstly, the computational cost and memory footprint
of BPTT can be substantial, especially for long input sequences,
due to the need to store neuron states at each time step. This
also implies relatively slow processing, as the system—gradient
computation for consecutive steps —is sequential in nature. Sec-
ondly, BPTT can suffer from problems with the stability of the
training process, as vanishing or exploding gradients can hinder
the learning of long-range temporal dependencies.®® Lastly,
BPTT is limited in terms of online learning, as it requires an orig-
inal input sequence to be available before the error is backpropa-
gated, thus making it non-causal. In general, BPTT is considered
biologically implausible, as it deviates from the local learning
mechanisms observed in the brain.’® The ongoing research
aims to address these limitations by exploring memory-efficient
BPTT techniques, such as activation checkpointing and trun-
cated BPTT,**° and developing more biologically inspired ap-
proximations, such as local learning rules and eligibility trace
propagation.®®°" Despite the highlighted shortcomings of
BPTT in its classical form, there are efforts to bypass them.
BPTT can be considered as a general group of algorithms that
are capable of propagating the global error signal over time.
These approaches leverage a BPTT-like mathematical founda-
tion to derive online and biologically plausible learning rules
for SNNs. This new perspective challenges the traditional
dichotomy between BPTT and local Hebbian-style plasticity
rules. A prominent example of such an approach is an E-prop
algorithm,®® an online learning method that leverages a
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Figure 4. Different sources of the top-level third factor

The signal can be emitted intrinsically between neurons in the same neuronal
circuit or extrinsically, when the signal arrives from outside of the circuit.
Neurons that coincide spatially, functionally or morphologically are considered
to be in the same circuit.® Understanding these spatial and temporal aspects
is crucial for designing SNNs that can leverage both local network dynamics
and global contextual cues for improved credit assignment and adaptive be-
haviors, mirroring biological learning processes.

mathematical refactoring of gradient descent, similar to BPTT,
but in a biologically plausible manner. It replaces the need for
backward-in-time propagation with a combination of eligibility
trace based on local spiking activity and global learning signals,
closely matching the performance of derivative-based BPTT.
Currently, BPTT based on surrogate gradients remains the pri-
mary method of training SNNs. However, a growing body of
research on robust and backpropagation-free methods, such
as E-prop, offers the potential to increase speed, scalability,
and energy efficiency while maintaining competitive perfor-
mance. Such advancements would unlock numerous applica-
tions for SNNs, particularly in resource-constrained environ-
ments and online learning scenarios.

RESEARCH TRENDS

The role of neurobiology in development of bio-inspired
learning rules

In this section, we describe the fundamental neurobiological
principles that have influenced the design and development of
bio-inspired learning rules, with a particular focus on three-factor
learning. We explore how advances in understanding neuromo-
dulation, synaptic plasticity, and neural circuit function provide
the foundation for these algorithms. By examining these mecha-
nisms, we aim to illustrate the origins of three-factor learning and
underscore the importance of incorporating such biological
complexity to enhance the plausibility and capabilities of artificial
learning systems. Advances in neuroscience have contributed to
our understanding of neuromodulation, synaptic plasticity, and
neural circuit function. From the perspective of three-factor
learning, knowledge on how neuromodulators such as dopa-
mine, acetylcholine, norepinephrine, and serotonin influence
neural activity, synaptic plasticity, and learning'®*® has greatly
influenced the development of such algorithms. In biological
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systems, neuromodulators influence plastic changes based on
reward signals, errors, and contextual information."'®? Studies
have shown that neuromodulators can alter the shape and polar-
ity of STDP windows and regulate neuron excitability, firing pat-
terns, and tuning curves.'%°® Specific findings include the roles
of dopamine in reward processing, motivation, and memory
robustness, as well as acetylcholine’s contribution to attention
and learning rate.?”"%® Furthermore, research has highlighted
the interaction of multiple neuromodulators, emphasizing their
role in coordinating different aspects of cognitive functions and
behavior.'%%* Synaptic plasticity research has further deepened
our understanding of mechanisms such as STDP and its varia-
tions, such as reward-modulated STDP (R-STDP).>* Neuromo-
dulators have been shown to gate or modulate STDP, influencing
synaptic changes by regulating calcium influx and excitatory-
inhibitory balance in neural circuits.'®® Studies have also
explored how different brain regions, such as the hippocampus,
cortex, and basal ganglia, contribute to cognitive functions such
as working memory and attention.’*® Models have demon-
strated how cholinergic and GABAergic modulation enhances vi-
sual attention and memory stability.®>%” Neuromodulation has
been shown to play an important role in homeostatic plasticity,
the crucial set of mechanisms that maintain stable neural
network function in the face of ongoing synaptic plasticity and
activity changes.®®%° Although synaptic plasticity (Hebbian) is
essential for learning, homeostatic plasticity counteracts poten-
tial instability by regulating neuronal excitability and synaptic
strength.®®’° This regulation prevents runaway potentiation or
depression, ensuring that the activity of the system remains
within a functional operating range.”""? Key homeostatic mech-
anisms include synaptic scaling, which globally adjusts synaptic
strength, and intrinsic plasticity, which modifies the intrinsic
excitability of a neuron.”®”* Neuromodulators influence these
homeostatic processes. For instance, dopamine can modulate
synaptic scaling and intrinsic excitability, affecting the stability
and plasticity of developing neural circuits.”>”® Serotonin plays
a role in the regulation of excitation-inhibition balance, a critical
aspect of network homeostasis.®® Acetylcholine contributes to
firing rate homeostasis and interacts with synaptic scaling mech-
anisms.””"® Although the primary form of plasticity discussed in
ML with SNNs and in this perspective is related to synaptic plas-
ticity, we note the possibility of including homeostatic plasticity
when developing novel algorithms. The interplay between neuro-
modulators, synaptic plasticity, and homeostatic mechanisms
underscores the complexity of biological learning. Three-factor
learning algorithms in SNNs, inspired by these principles, offer
a powerful framework to capture this complexity. However, to
truly emulate biological intelligence, future research must move
beyond isolated mechanisms and strive for a more holistic
integration. This includes developing models that account for
dynamic interactions between different neuromodulators,
context-dependent modulation of STDP, and the stabilizing
role of homeostatic processes.

Three-factor learning algorithms

A wide range of learning algorithms has been explored in SNNs,
many inspired by biological mechanisms. Three-factor learning
rules have gained prominence, introducing a third element,
such as neuromodulators or error signals, to improve synaptic
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updates.'%""**? The fundamental motivation behind three-factor
learning stems from the need to model biological neural plasticity
more accurately. Traditional learning approaches often strug-
gled to capture the complex mechanisms of synaptic modifica-
tion observed in biological systems. By introducing a third factor,
typically a neuromodulatory signal, error signal, or reward signal,
researchers have developed more sophisticated learning algo-
rithms that can adapt more dynamically to environmental con-
texts. In this section, we describe a selection of research articles
that demonstrate the applicability of three-factor learning in solv-
ing ML tasks. Several key approaches have emerged in the
development of three-factor learning rules. In Frémaux et al.,”®
the authors analyze the functional requirements for R-STDP us-
ing a simple set of neurons. They compare R-STDP and R-max
STDP, where the reward signal acts as an additional multiplier
of the change in synaptic weight, delivered at the end of a task
to indicate success. Through trajectory learning and spike train
response tasks, they explore the theoretical underpinnings of
reward-modulated plasticity, concluding that effective reward-
based learning requires a small unsupervised term influence,
sensitivity to reward timing, and a reward prediction mechanism.
RL principles have been particularly influential in three-factor
learning strategies. In Frémaux et al.,’® the authors propose a
continuous-time actor-critic framework for RL in SNNs. They
explicitly model temporal credit assignment using temporal dif-
ference (TD) learning, where synaptic plasticity is modulated
by TD error. The approach integrates value and policy networks
with R-STDP. They evaluated their method in challenging RL
tasks, including Morris water maze navigation, acrobot, and
cartpole simulations, demonstrating the effectiveness of their
approach in complex motor control scenarios. Vasilaki et al.”
explored spike-based RL in continuous state and action spaces,
addressing cases where traditional policy gradient methods fail.
They propose a feedforward SNN model in which reward modu-
lates the probability of firing sequences propagating from place
cells (representing agent position) to action cells (controlling
movement). Synaptic changes are driven by STDP, modulated
by a biologically plausible third-factor reward signal. The model
is tested in a simulated water maze task, showcasing its poten-
tial for sophisticated spatial navigation learning. More recent de-
velopments have pushed the boundaries of three-factor
learning. In Bellec et al.,>° the authors introduce the E-prop algo-
rithm, with the aim of approximating BPTT for global error projec-
tion. They take inspiration from the error-related negativity, a
signal that immediately follows the erroneous behavior in the
brain.®° The algorithm achieves results close to BPTT on a vari-
ety of tasks, including speech recognition, word prediction, one-
shot learning, and pattern generation. Building on these founda-
tions, Liu et al.*’ propose MDGL (multidigraph learning rule), an
innovative algorithm to propagate top-down error signals to spe-
cific neurons in the network, which then propagate them further
in their local neighborhood. Through comprehensive evaluation,
they demonstrate that their method closely matches BPTT and
outperforms E-prop in online learning and pattern generation
tasks. In a notable contribution, Schmidgall and Hays"*® show
an interesting approach of using signals obtained with meta-
learning to modulate STDP, which is optimized by gradient
descent. The synaptic change occurs when a neuromodulatory
signal appears. They demonstrate the robustness of their solu-
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tion by evaluating the network in T-maze navigation, character
recognition, and cue association tasks. Barry et al.*® developed
amethod using modulated STDP to gate plasticity, introducing a
surprise signal derived from error. Their approach involves
inducing synaptic changes whenever a surprise signal arrives.
Through rigorous testing in continual learning and rule-switching
scenarios, they showcase the system’s ability to rapidly adapt
while maintaining operational stability. Quintana et al.®" propose
a novel event-based three-factor local plasticity (ETLP) method
tailored for online learning with neuromorphic hardware. Their
approach features a unique architecture where hidden layers up-
date weights through random matrices, and the output neurons
are connected one to one to excitatory and inhibitory synapses.
Evaluated on pattern recognition tasks using N-MNIST and SHD
datasets, ETLP achieves competitive classification accuracy
with lower computational complexity compared to global
methods such as BPTT and E-prop. These algorithms collec-
tively aim to improve performance on tasks that require temporal
memory, decision-making, and context-sensitive learning, with a
strong emphasis on mimicking the mechanisms found in natural
neural systems. This emphasis reflects a broader trend toward
integrating both local synaptic updates and global modulatory
signals to improve the scalability and efficiency of learning in
SNNs.>%3" A comparison of three-factor learning algorithms
and their applications is shown in Table 1.

Datasets
Given the inherent heterogeneity and the involvement of multiple
domains in three-factor research, the characteristics and types
of datasets used exhibit significant variation, as presented in
Figure 5. A significant number of studies are based on synthetic
or custom-designed benchmarks, which allow precise control of
experimental variables.*®° These datasets simulate tasks such
as navigation (e.g., 1D and 2D multi-target tasks), robotics (e.g.,
robotic arm reaching and terrain crossing), cognitive tasks (e.g.,
working memory, decision-making, and attention), and pattern
recognition.***® Custom tasks such as rule-switching, mem-
ory-guided saccades, and associative learning are also
common. %3

In contrast, some studies incorporate well-known ML
datasets such as MNIST,”® Caltech-256,° ETH-80,%° and
NORB®® for image recognition or SHD?” for speech analysis.
Some of those datasets, especially in image recognition, are
adapted to have the properties of recordings gathered with
native neuromorphic sensors. An example of such adoption is
the N-MNIST dataset,”® used by Quintana et al.®’ There are
also cases, especially in neuroscience research, in which exper-
imental data from biological studies are used, including cortical
slice recordings, optogenetic experiments, and natural scene
videos.'®** However, such studies focus on discovering biolog-
ical mechanisms in living systems. Although they remain crucial
for the discovery of bioplausible learning mechanisms, such
studies often do not attempt directly to train SNNs to solve a spe-
cific task using the discovered phenomena. Thus, it can be
observed that real-world datasets remain underutilized, particu-
larly in studies focusing on theoretical models and neural mech-
anisms.”>°® This indicates a trend toward task-specific
simulations over standardized benchmarks. In the future, there
is a growing need to validate models through greater use of

4,38,81
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Table 1. Comparison of research with three-factor learning algorithms

Article Learning algorithm Task Dataset Performance Network size Platform
Chen et al.®? R-STDP image reconstruction, MNIST, natural 89% accuracy (MNIST), 4,096 neurons, neuromorphic chip
classification scene images RMSE 0.036 (image 1 M synapses
reconstruction)
Florian' R-STDP food search biologically learned to find 360 neurons CPU/GPU
inspired simulation food in <1 min
Potjans et al.®® actor-critic gridworld navigation nontrivial latency < 10 within 60 neurons CPU/GPU
TD learning gridworld task 30 trials, RMSE 2.7 fC
Vigneron et al.’ various pattern recognition Caltech, MNIST, accuracy: varying, CPU/GPU
modulated CIFAR-10/100, 48.27%-99.1% typically shallow
STDP variants STL-10, DVS (image), 95%-98%
(trajectory)
Alnajjar et al.?° modulated STDP obstacle avoidance dynamic physical robot adapted dynamically adjusted mobile robot
environments smoothly
Park et al.®* modified image classification MNIST, CIFAR-10 97.83%-98.3% 400 on-chip neurons; neuromorphic chip
segregated (MNIST), 50.8% simulated up to
dendrites (CIFAR-10) 1,394 neurons
algorithm®®
Buhler®® locally image classification MNIST 88% accuracy 512 analog neurons neuromorphic chip
competitive
algorithm
Frenkel®” spike-driven image classification MNIST 84.5% accuracy 256 neurons, neuromorphic chip
synaptic 64,000 synapses
plasticity
Allred and Roy™’ dopamine- unsupervised MNIST 95.24% accuracy 400-6,400 neurons CPU/GPU
modulated lifelong learning
STDP
Mozafari et al.* R-STDP image classification MNIST 97.2% accuracy 6-layer Conv SNN CPU/GPU
Uludag et al.®® modulated go/no-go decision simulated data not specified 8,381 neurons, neuromorphic chip
neuron (energy focus) 252,987 synapses
Liu et al.*' MDGL (multidigraph pattern generation, simulated data loss-function values not specified CPU/GPU
learning rule) delayed match,
evidence accumulation
Bellec et al.>® E-prop pattern TIMIT, Penn MSE 0.01; <5% 20-600 recurrent CPU/GPU
generation, Treebank misclass; 62.9% neurons; 200-256
store-recall, acc; 74 char seq; LSTM (long short-term
speech recognition, perplexity 113 memory) cells
copy-repeat, word
prediction
Quintana et al.®’ ETLP event-based pattern N-MNIST, SHD 94.30% (N-MNIST), 1,170 and CPU/GPU; FPGA

recognition

74.59% (SHD)

2,274 neurons

(field-programmable
gate array)

(Continued on next page)
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Table 1. Continued

Article Learning algorithm Task Dataset Performance Network size Platform
Rostami et al.®” E-prop KWS (keyword spotting) Google 91.2% accuracy 20-360 neurons neuromorphic chip
Speech
Commands
Zambrano et al.®® CT-AuGMENT saccade tasks, simulated data 95%-99% 14-22 neurons CPU/GPU
match to category, high convergence rates
motion tasks
Barry and Gerstner*® SpikeSuM volatile sequence simulated data up to 100% detection up to 1,000 neurons CPU/GPU
tasks with rule switching
Schmidgall and Hays*® Meta- cue association, simulated and 95.6% (cue); 20-196 neurons CPU/GPU

Mikaitis et al.®

Frenkel et al.®

Vasilaki et al.”®

Legenstein®’

SpikePropamine

dopamine-
modulated STDP

feedforward
eligibility traces

modulated STDP

reward-modulated
STDP

one-shot classification

Pavlovian conditioning

hand gesture,
KWS,
navigation

Morris water maze
3D cursor control

character
recognition dataset

simulated data

IBM DVS
Gestures, SHD,
synthetic

simulated data
experimental data

79.6% (char)

not stated
(efficiency focus)
87.3% (gestures),
90.7% (KWS),
96.4% (nav)

solved task correctly

reproduced
credit assignment;
good agreement

10-10,000 neurons,
10 M synapses

up to 256 neurons,
64,000 synapses

700 neurons
480 neurons

neuromorphic chip

CPU/GPU

CPU/GPU
CPU/GPU

The performance of other learning algorithms that are often included comparatively are not included in the table. RMSE, root-mean-square error.
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Custom
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Well-known
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No datasets

Experimental
data
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N

Simulated
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Figure 5. Datasets used in research papers investigating three-
factor learning in spiking neural networks

The prevalence of custom and simulated datasets in three-factor SNN
research, as shown in this figure, highlights a current limitation in the field. To
ensure the robustness and real-world applicability of three-factor learning al-
gorithms, there is a clear need for greater utilization of standardized, real-world
neuromorphic datasets, which would facilitate more comparable and rigorous
evaluation of learning performance.

real-world data, ensuring that the proposed learning algorithms
are robust in diverse environments and applications.”"'® Further-
more, applied SNN research would greatly benefit from estab-
lishing a wide set of standard neuromorphic datasets, compara-
ble to MNIST or ImageNet for classic deep learning. The number
of such datasets is growing,®”:°® yet it remains a challenge, often
demanding specialized neuromorphic hardware and precise
experimental setups. In addition, SNN applications span various
domains, making standardization a persistent challenge.

Application domains

Research on three-factor learning in SNNs spans multiple scien-
tific and technological domains, with neuroscience and neurobi-
ology forming the foundation of many studies.?®:39346¢
An important line of study is the modeling of neural circuits in
brain regions, such as the hippocampus, cortex, and basal
ganglia, to investigate the mechanisms underlying synaptic
plasticity: STDP, neuromodulation, and neurotransmitter influ-
ences. 642100101 Biglogical studies on three-factor learning
rules highlight the ability of these algorithms to better capture
cognitive processes such as memory, attention, decision-mak-
ing, and brain rhythms.'" 833192 Many of these approaches
are validated with experimental data from in vitro and in vivo
studies, showing the occurrence of such processes in living neu-
ral systems.”®”® Beyond neuroscience, three-factor learning is
explored in the domains of ML, robotics, and neuromorphic
computing.’>688%  Traditional Hebbian and STDP-based
learning often struggle with credit assignment over long time-
scales and stability, whereas three-factor learning integrates a
modulatory signal that refines synaptic weight updates based
on task-relevant feedback.'?*'%* These algorithms are particu-
larly promising for tasks that require real-time decision-making,
continuous learning, and resilience to environmental changes.
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Robotics and cognitive modeling have also benefited from
three-factor learning. Neuromodulated SNNs enable adaptive
motor control, navigation, and sensor fusion, allowing agents
to operate effectively in dynamic environments.”%?%434¢ Many
studies develop neuromorphic controllers that incorporate
reward-modulated plasticity for RL, optimizing behavior through
experience-dependent synaptic changes. In computer vision
and sensory processing with SNNs, three-factor learning has
been applied to pattern recognition, object classification, and
feature extraction.”*' Compared to pure STDP, these ap-
proaches improve generalization and robustness, particularly
in unsupervised or RL settings. Other research explores affective
computing, where neuromodulation is used to simulate adaptive
emotional responses in Al systems, influencing decision-making
and learning strategies.®'** Lastly, a growing area of interest is
neuromorphic hardware, where SNNs with three-factor learning
are being implemented on specialized architectures for energy-
efficient computation.*#%9219% Such solutions enable effective
inference and on-chip learning, crucial in domains such as ro-
botics. In the following sections, we discuss the topics related
to dedicated hardware for three-factor learning. In Figure 6, we
try to summarize the distribution of the research domains in
the papers we focus on in this perspective. Additionally, in
Figure 7, we show the distribution of scientific disciplines that
are predominant across the reviewed papers. In the context of
the theoretical domain division in SNN research, as presented
in Figure 1, we can see that the field of three-factor learning is
predominantly analyzed from the perspective of neurobiology
and ML, leaving the electronics (hardware) and computer sci-
ence (computational aspect) relatively underrepresented,
showing the need for further research.

Applications in Al and robotics

Neuromodulation and three-factor learning have influenced ad-
vances in Al and robotics, with applications focusing on adaptive
control and navigation. Studies highlight how neuromodulated
learning enables robots to navigate, avoid obstacles, and manip-
ulate objects in dynamic environments.'®?° Adaptive robotic
control can be achieved through three-factor learning rules in
SNNSs, allowing robots to learn and adjust to new terrains and
tasks in real time.?>*** Some models use hierarchical control
structures inspired by biological systems, such as the nervous
system of Aplysia, to enhance autonomous navigation.'**® In
addition, emotion-modulated RL has been explored to improve
robot adaptability by adjusting learning rates and reward predic-
tions based on neuromodulatory influences such as dopamine
and acetylcholine.®"®* The integration of real-world sensors
with neural networks further supports adaptive behavior in com-
plex environments, where rapid adaptability and online learning
are crucial.”*> Neuromodulation in SNNs can also be achieved
using RL, an established method in the field of robotics and
autonomous systems.'%® Actor-critic frameworks and R-STDP
can be used to improve temporal credit assignment and deci-
sion-making processes.**"'% Continuous-time RL mechanisms,
combined with working memory features, enable evidence
accumulation and better control of agents in dynamic sce-
narios.**°° Cognitive and affective Al applications focus on neu-
romodulated architectures that simulate emotional influences,
using neurotransmitter analogs such as dopamine and serotonin
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Figure 6. Application domains of SNN research reviewed in

this work

The significant percentages in areas like robotics and navigation, cognitive and
memory tasks, and decision-making and control underscore the potential of
three-factor learning for creation of adaptive and biologically plausible Al
systems capable of complex behaviors in dynamic environments.

to improve creativity, decision-making, and memory alloca-
tion.®"*® Lifelong learning is also supported by mechanisms
such as surprise-modulated plasticity and controlled forgetting
through dopaminergic modulation.'”*° Additional studies apply
these innovations to pattern recognition, image classification,
and decision-making tasks, often optimizing neuromorphic

Machine
learning

Hardware

Computer
science (2%)

Neurobiology

Figure 7. Primary scientific domain across reviewed research
articles in the domain of three-factor learning, highlighting the
strong foundational role of neurobiology and ML in the current
landscape of three-factor learning research

The relatively smaller contributions from computer science and hardware
signal a need for further interdisciplinary research to fully realize the potential of
three-factor learning in scalable and energy-efficient neuromorphic
computing.
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hardware models to improve energy efficiency and scalabil-
ity.**” These advances reflect a multidisciplinary effort to create
biologically inspired, robust, and adaptive systems capable of
real-time learning and adaptation in uncertain environments.
Thus, SNNs using three-factor learning show promise for
advancing the domain of edge devices and robotics, especially
because of their remarkable energy efficiency and adaptability.

Scalability considerations

Scalability is a critical challenge in all computational methods,
including SNNs. However, in the domain of SNNs, measurement
of computational complexity and required resources is much
more challenging than for any software deployed on CPUs or
GPUs. The reason for this is the unique and asynchronous
mode of operation of these networks, as neuronal signals are
propagated sparsely over time. Thus, full exploitation of their
properties is tightly coupled with the neuromorphic hardware
that is used to deploy them. The co-design of software and hard-
ware in SNNs is beyond the scope of this perspective, yet the
awareness of its importance is growing.®?'%%107:198 Gyyrently,
most research in the domain of SNNs and three-factor learning
either omits the computational complexity of proposed algo-
rithms or tries to summarize it using the theoretical number of op-
erations performed during the runtime. However, standard
complexity measures, such as floating-point operations
(FLOPs), commonly used in deep learning, are insufficient for
SNNs due to their fundamentally different mode of computation.
Unlike ANNs, which perform dense matrix multiplications at each
layer, SNNs operate in an event-driven manner, where computa-
tions are sparse and depend on spike occurrences. A common
alternative is to count the number of accumulated operations,
which refer to additions performed when integrating spikes
incoming to a neuron.'% This contrasts with traditional ANNSs,
where operations typically involve multiply accumulate (MAC)
computations due to weight multiplications in dense layers. In
some cases, authors also rely on classical big-O complexity
analysis.®" Although useful for rough estimations, such methods
remain limited because they do not account for hardware-spe-
cific optimizations, memory constraints, or differences in execu-
tion models, all of which can significantly impact the real-world
efficiency of SNN implementations.'®""%""" Scalability and
computational requirements are necessary to fully evaluate the
system’s usefulness when deployed; therefore, establishing reli-
able metrics is necessary. We envision that in the future,
measuring computational efficiency and scalability of SNNs,
together with the used learning algorithms, will inherently
depend on the used neuromorphic platform.

Encoding methods

Methods of encoding analyzed data in spike trains that serve
as input to SNN play a fundamental role in determining their per-
formance and efficiency.’'? Neuroscience research has discov-
ered that neurons use numerous encoding schemes in the
brain.""*~""® While important, their full description is beyond
the scope of this perspective. Thus, we will briefly describe
only the selected ones to highlight their trade-offs and comple-
mentarity, as well as popularity in three-factor learning research.
Rate encoding is the most widely used encoding method in SNN
research in general. It represents information through the
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Other (196) [——== |

Rate

Figure 8. Overview of input-encoding methods in SNNs, highlighting
the predominance of rate encoding and the increasing adoption of
time-based and hybrid encoding strategies

The choice of encoding method directly influences how temporal spike pat-
terns interact with neuromodulatory signals in three-factor learning rules, im-
pacting the learning efficiency and biological plausibility of SNN models. The
limited adoption of adaptive and phase encoding suggests potential areas for
further exploration to enhance the expressiveness of SNNs using three-factor
learning.

frequency of spikes, making it simple and compatible with neu-
romorphic hardware. It is also easily used for converting non-
temporal data into the spiking representation. Using the example
of static images, the intensities of individual pixels are treated as
probabilities of spike occurrence in a given timestep. Temporal
encoding methods leverage precise spike timing to convey infor-
mation. They exist in many variations, but the core idea behind
them is to emphasize the spikes that arrive earlier as the ones
carrying more information."'” Temporal encoding methods usu-
ally lead to lower computational complexity, as the network
emits a lower number of spikes."'? Lastly, we note the idea of
fully adaptive encoding. It refers to the set of methods that
employ parametrized neural network layers that can learn the
spike representation of input data.“® It is still rarely used among
SNN researchers, yet neuroscientific evidence shows its impor-
tance in biological neural systems, indicating the possibility of
further exploration.''® It is important to note that the type of en-
coding can be related to input data encoding or intraneuron
communication in the network. However, most often, the same
encoding is applied for both cases. Each encoding strategy pre-
sents trade-offs between efficiency, biological plausibility, and
ease of hardware implementation. Figure 8 provides a summary
of the encoding methods used in the literature analyzed in this
perspective. We consider only the type of input encoding, which,
in most cases, also translates to neuronal communication in the
network.

The distribution of encoding methods shown in Figure 8 under-
scores the widespread reliance on rate encoding, which consti-
tutes almost 50% of the approaches used in the research of the
analyzed papers. This prevalence comes from its straightforward
implementation and compatibility with neuromorphic hardware,
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despite its relatively lower temporal precision and increased
computational cost."'? Time-based encoding follows as the sec-
ond most utilized method, at 25.4%, reflecting the increasing
emphasis on spike timing as a means of improving computa-
tional efficiency. Phase encoding and adaptive encoding were
used in only 1.5% of the articles for both methods. Although
beneficial, their lower popularity may indicate that the use of
such encoding methods is yet to be explored. The remaining
22.4% of articles were related to experimental neuroscience,
simulations of neuronal dynamics, or other studies where input
encoding was either not explicitly stated or not directly relevant.
This distribution suggests that, while rate-based encoding re-
mains dominant, alternative strategies, particularly time-based
approaches, are gaining traction as researchers explore more
efficient and biologically plausible representations of neural in-
formation. This is especially relevant when considering the
deployment on specialized hardware, where relying solely on
rate coding can lead to increased computational cost.''? Addi-
tionally, increasing the expressiveness of SNNs would require
further exploration for determining optimal neural coding pat-
terns both for input data and neuronal communication. Finally,
we emphasize that the uniqueness of three-factor learning
methods lies also in their general applicability for synaptic plas-
ticity rules, irrespective of the chosen encoding method.

Hardware and computational platforms

The development in the design and manufacturing of neuromor-
phic hardware has led to the emergence of numerous applica-
tions that deploy SNNs on such chips."'® This choice of
computing platforms significantly impacts the scalability and ef-
ficiency of SNN simulations. While traditional platforms such as
CPUs and GPUs dominate, neuromorphic hardware is gaining
attention for its potential in energy-efficient processing. The
overview of neuromorphic chip research utilizing three-factor
learning can be seen in Table 2. Despite the growing number
of SNN applications on neuromorphic chips, examples of appli-
cations of three-factor learning on such chips are limited. In a
work by Mikaitis et al.,°" the authors show the effectiveness of
this learning rule in solving the problem of credit assignment in
the Pavlovian conditioning task on the Spinnaker'?® chip. The
proposed solution was compared with the GPU-based alterna-
tive, where neuromorphic implementation has shown a reduced
runtime when scaling the number of synapses. Rostami et al.®*
show an implementation of E-prop in the Spinnaker2 proto-
type.'?" They compare the three-factor method with BPTT,
matching the performances of ANN models on the Google
Speech Commands dataset.’®? Uludag et al.®® used Loihi2'"°
to create a model inspired by the basal ganglia to solve the go/
no-go task, where synaptic plasticity was modulated by a signal
that mimics the role of dopamine. A growing body of work show-
cases the effectiveness of three-factor learning on custom-made
neuromorphic platforms. Recently, Frenkel and Indiveri intro-
duced the ReckOn neuromorphic accelerator to train recurrent
neural networks.'%° This chip also enables three-factor learning
based on the adapted E-prop algorithm. They demonstrate the
feasibility of on-chip training via the aforementioned algorithm
to obtain a network-solving navigation task with similar effective-
ness to BPTT. In previous work introducing ODIN (online-
learning digital spiking neuromorphic processor) and SPOON
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Table 2. Comparison of research on neuromorphic chips with support for three-factor learning

Platform No. of neurons,
and author no. of synapses Learning algorithm Energy usage Task Dataset Performance Technology
ODIN chip, 256 neurons spike-driven synaptic prediction image classification 6,000 MNIST accuracy: off-chip digital, 28-nm
Frenkel et al.”? (10 used), plasticity (SDSP) for  cost: 15 nJ samples (16 x 16 learning: 91.4%; FDSOI CMOS
64,000 synapses on-chip online downsampled) on-chip
learning; learning: 84.5%
BPTT for off-chip
learning
SPOON chip, Conv. core: direct random target  prediction cost: image classification MNIST, N-MNIST accuracy (MNIST/ digital, 28-nm
Frenkel et al.?’ 10 5 x 5 kernels, projection MNIST: 313 nJ; NMNIST): off-chip FDSOI CMOS
256 synapses algorithm'?® NMNIST: 665 nJ learning: 97.5%/
(parameters); for on-chip learning; 93.8%; on-chip
FC (fully connected) BPTT for off-chip learning: 95.3%/93%
core: 138 neurons, learning
64,000 synapses
10-nm FinFET 4,096 neurons, STDP, R-STDP for prediction cost: image MNIST, natural accuracy (MNIST digital, 10-nm
chip, 1 M synapses on-chip learning; 1.0-1.7 pJd reconstruction, scene images classification): FinFET CMOS
Chen et al.®? BPTT de-noising, image on-chip learning,
for off-chip learning classification R-STDP: 89%;
off-chip learning,
BPTT: 98.60%
ReckOn chip, up to 256 recurrent modified E-prop prediction cost: hand gesture IBM DVS Gestures, accuracy: 87.3% digital, 28-nm
Frenkel neurons, 16 output algorithm 0.6-42 nJ; training recognition, Spiking Heidelberg (gestures), 90.7% FDSOI CMOS
and Indivieri'®® neurons, 132,000 step cost: 1.5-178 nJ  keyword spotting, Digits (KWS), (KWS), 96.4% (nav)
synapses (8-bit) navigation synthetic
Loihi 2, up to 1,048,576 task solved by single timestep go/no-go not specified not applicable digital, Intel 4
Uludag et al.*® neurons, pre-configured cost: ~5.665 pJ decision-making (focuses on Process (7 nm)
120 M synapses neurons evaluation of
(used: modulated with third neuron models)
8,381 neurons, factor
252,987 synapses)
SpiNNaker up to 10,000 neurons, neuromodulated total power Pavlovian custom setup not stated (focuses digital, UMC 130-nm
1, Mikaitis et al.”’ 10 M synapses STDP consumption: conditioning for Pavlovian on computational 1P8N CMOS

65-nm image
classification
processor, Park
etal.®*

2 x 200 hidden
layer neurons

(three-factor learning
algorithm)

modified segregated
dendrites algorithm®®

up to 1 W for all
cores @ 180 MHz

prediction cost:
236.5 nJ; training
step cost: 254.3 nJ

image classification

conditioning

MNIST (on-chip
experiments)

efficiency)

accuracy: 97.83%
(on-chip training)

digital, TSMC 65-nm
LP CMOS

(Continued on next page)
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spiking online-learning convolutional neuromorphic processor,
piking 9 phic p
5 5 chips,®”9? Frenkel et al. also demonstrated a successful deploy-
a S ment of reward-based on-chip learning to perform digit classifi-
“E‘ -; @ cation on the MNIST dataset.® Other research groups have also
b= (i % g proposed their own chips with three-factor online learning capa-
L N $ O bilities, showing their effectiveness and energy efficiency in the
£l 2 X g MNIST classification®-%*8°
el g < The relative scarcity of solutions implementing three-factor
learning on neuromorphic chips points toward a possible unex-
© plored research direction. Most modern neuromorphic systems
Rt < support reward signals by design.'?* Furthermore, a growing
8l s 3 ecosystem of software development kits allows porting solutions
§ = = based on three-factor learning to the dedicated hardware.'°
£l ® ®
0| ® ® LIMITATIONS AND CHALLENGES
Despite significant progress in three-factor learning for SNNs,
5 several limitations and challenges remain. These challenges
§ a span theoretical, computational, and practical aspects and affect
- <g S the scalability, biological plausibility, and real-world applicability
[0} - . . .
gl e E 15) '@ of current models. The primary concerns include the following.
BB Z
[$)
afeo= = (1) Simplified neuron models and network structures: many
- studies use simplified neuron models, such as the
o % Hodgkin-Huxley model, leaky integrate-and-fire models,
E= & or Izhikevich models.'®'%* These models often lack the
3 ﬁ biological diversity and complexity of real neurons,
353 E including a limited diversity of receptor actions, simplified
é 3 2 neuron morphologies, and a lack of detailed modeling of
i E cellular processes.*%'°° Furthermore, network structures
- are often simplified, with limited spatial connectivity and
g 205 inter-columnar connections, and sometimes consist of
JIEEEE % only a few layers.”' These simplifications can limit the
2l2E XS & generalizability of the findings and their applicability to
+ O =
n| O . .
>l 5 ki § 25 real biological systems.”"""
= [ "é, lg £ £ (2) Lack of real-world testing and global error propagation: a
Sl2838 g B significant number of studies rely on simulations and syn-
thetic datasets,**” with a lack of real-world testing and
e ° empirical validation.”*' Some models are tested in simple
=l E £ simulated environments and on simplified tasks, which
S5 qg’. limits their real-world applicability.?>°° Furthermore,
il =4 S g many models lack a clear mechanism for global error
E é‘ > ﬁ propagation, which is crucial for complex learning
gl 2 S % tasks.>>*° Although some papers address credit assign-
- ment, most models do not fully implement it.'>*°> Some
@ models use simplified or indirect forms of supervision
e e g that may not be sufficient for complex tasks.*??
%) % [ % 3 . -
s2|/5 g 2 (3) Parameter tuning and scalability challenges: many
;5) § 8 . % 8 models require careful parameter tuning for optimal per-
2|3 Eg & formance,>®*° and their performance can be sensitive
5 2 252 « to parameter choices.”’"'%® Furthermore, many models
3 ZclNecd et have limited scalability and are not tested on large-scale
3 networks or complex tasks.'*®® Some models have
'E high computational costs, which can limit their applica-
S %‘_“. o5 8 bility.'®?° Although some studies show scalability to
. 5|8 ¢ ® _§ S some extent, they often highlight limitations when applied
SlEs g SE ? 2% to more complex scenarios.®”® There is also a need for
Ak g Zz 2 % c % 3 2 more efficient algorithms that can scale to larger and
|8 |12 o S c 23 12,42
FIZ sl ac ¥ & om more complex networks. =
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FUTURE DIRECTIONS

Three-factor learning in SNNs presents exciting opportunities
to bridge biological plausibility and ML efficiency. Future
research should focus on optimizing neuromodulatory mecha-
nisms for improved credit assignment, enhancing scalability for
large networks, and integrating three-factor learning with mod-
ern deep learning frameworks. In addition, efforts should be
made to validate these models with real-world data and neuro-
morphic hardware to enable practical applications in Al, ro-
botics, and cognitive computing. Cross-disciplinary collabora-
tions will be essential in refining learning rules and expanding
their applicability.

Research opportunities

Several sources highlight areas for improvement in the field of
neuromodulation and plasticity in neural networks. A key chal-
lenge is to improve the scalability of current models. Many
studies use simplified models and simulated data, and it is
necessary to extend these models to larger, more complex net-
works and real-world datasets.>*"*°° For example, while some
models demonstrate scalability to a certain extent, they often
note limitations when applied to more complex scenarios or
real-world data.*® Another key research area involves the explo-
ration of novel learning rules and architectures. Many studies
introduce new learning methods or variations on existing ones,
such as STDP, but these often require further validation and
testing in diverse contexts.®'%?" For example, some studies pro-
pose new three-factor learning methods,'"®> while others
explore different ways to modulate STDP."?*® There is also a
need to better understand how neuromodulators can be used
for credit assignment in deep networks.'”'®*° Some studies
suggest that neuromodulators can act as a third factor in Heb-
bian learning, but the specific mechanisms and implementation
details need further exploration.'**>%? Finally, the validation of
computational models with experimental data is crucial. Many
studies rely on simulations and lack direct empirical valida-
tion.*?3126 Future research should focus on bridging the gap
between theoretical models and experimental findings.’+'¢

Interdisciplinary approaches

The sources strongly suggest that interdisciplinary collaboration
is essential for progress in this field. The most successful studies
often involve teams from diverse backgrounds, including
neurobiology, ML, computer science, and robotics.”*°%'?” By
combining expertise from different fields, researchers can gain
a more comprehensive understanding of the complex interac-
tions between neuromodulation, plasticity, and learning.’:"%1°"
Specifically, integrating biological insights into Al and ML models
can lead to more robust and adaptable systems.**"*° For
example, modeling the effects of neuromodulators like dopa-
mine, acetylcholine, and norepinephrine can lead to more so-
phisticated learning algorithms.”""'®3" The study of astrocytes
and their role in neuromodulation also opens up new avenues
for exploration.’°° Furthermore, understanding how the brain im-
plements credit assignment, working memory, and decision-
making processes can guide the development of novel Al
architectures.'>**°° In summary, the future of this field lies in
combining cutting-edge computational techniques with a deep
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understanding of biological mechanisms. By embracing interdis-
ciplinary approaches, researchers can push the limits of what is
possible and develop more powerful and biologically plausible Al
systems. 192"

CONCLUSIONS

This review has provided an overview of three-factor learning in
SNNs, highlighting its significance in bridging biological plausi-
bility and ML efficiency. The inclusion of neuromodulatory sig-
nals as a third factor improves credit assignment, adaptive
learning, and long-term synaptic modifications, making SNNs
more suitable for real-world applications. The key insights
from this review emphasize the importance of interdisciplinary
collaboration between neuroscience, Al, and robotics. Ad-
vances in neuromorphic computing, biologically inspired algo-
rithms, and novel encoding strategies continue to drive im-
provements in network scalability, learning efficiency, and
cognitive modeling. Although significant progress has been
made, challenges such as model validation with real-world
data, scalability limitations, and computational efficiency
remain critical research areas. Future research should focus
on integrating three-factor learning into scalable deep learning
frameworks, optimizing neuromodulatory mechanisms for
more biologically plausible credit assignment, and leveraging
neuromorphic hardware for energy-efficient processing. By
combining theoretical models with experimental validation
and cross-domain collaboration, researchers can further refine
learning rules and develop robust, adaptive systems. Ulti-
mately, the future of three-factor learning lies in its ability to
integrate insights from biological systems into Al, enabling
more efficient, flexible, and human-like learning in neural net-
works. As the field advances, continued interdisciplinary efforts
will be key to unlocking new possibilities in Al, cognitive
computing, and robotics.
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