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SUMMARY

Three-factor learning rules in spiking neural networks (SNNs) have emerged as a crucial extension of tradi-

tional Hebbian learning and spike-timing-dependent plasticity (STDP), incorporating neuromodulatory sig-

nals to improve adaptation and learning efficiency. These mechanisms enhance biological plausibility and 
facilitate improved credit assignment in artificial neural systems. This paper considers this topic from a ma-

chine learning perspective, providing an overview of recent advances in three-factor learning and discussing 
theoretical foundations, algorithmic implementations, and their relevance to reinforcement learning and neu-

romorphic computing. In addition, we explore interdisciplinary approaches, scalability challenges, and po-

tential applications in robotics, cognitive modeling, and artificial intelligence (AI) systems. Finally, we high-

light key research gaps and propose future directions for bridging the gap between neuroscience and AI.

INTRODUCTION

In recent years, spiking neural networks (SNNs) have emerged as 

a promising paradigm in artificial intelligence (AI), inspired by the 

way biological neurons communicate through discrete spikes. 1,2 

Unlike traditional artificial neural networks (ANNs), SNNs operate

in a time-sensitive manner, allowing them to model temporal pat-

terns and perform energy-efficient computation. 3,4 Despite 

these advantages, many challenges remain in the development 

of efficient learning rules for SNNs, particularly in scaling these 

models to complex real-world applications 5–7 and developing 

learning algorithms that fully exploit their properties. 8

THE BIGGER PICTURE Spiking neural networks (SNNs) represent a promising, brain-inspired paradigm for 

artificial intelligence, offering potential for greater energy efficiency and temporal processing capabilities. 

However, a key challenge lies in developing effective learning rules that are both biologically plausible and 

computationally powerful. Traditional two-factor rules, such as spike-timing-dependent plasticity (STDP), 

often fall short in complex learning scenarios because they lack a mechanism for integrating global feedback, 

such as reward signals. This perspective provides a comprehensive overview of three-factor learning rules, 

which address this limitation by incorporating a third, neuromodulatory signal. This signal, analogous to the 

function of dopamine in the brain, modulates synaptic plasticity based on global information, thereby facil-

itating more effective credit assignment. By reviewing the state of the art from a machine learning perspec-

tive, we bridge theoretical neuroscience with practical AI applications.

We survey the theoretical foundations, analyze various algorithmic implementations, and explore the signif-

icant impact of these rules on reinforcement learning and neuromorphic computing. This synthesis highlights 

how three-factor learning is not just enhancing the biological realism of SNNs but also unlocking new capa-

bilities for creating more adaptive and robust intelligent systems. By showing current trends and future direc-

tions, we aim to accelerate the convergence of neuroscience and AI, paving the way for next-generation 

learning algorithms.
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The fundamental biologically inspired learning rule is spike-

timing-dependent plasticity (STDP), 9 where synaptic weights 

are modified based on the temporal coincidence of incoming 

presynaptic and generated postsynaptic spikes at the neuron. 

An extension of STDP and the main topic of this perspective is 

the three-factor learning rule, which incorporates an additional 

modulatory signal, often representing neuromodulators such 

as dopamine. 10–12 This third factor plays a crucial role in guiding 

plasticity by integrating global contextual information, allowing 

the network to learn both reward signals and environmental 

feedback. 13,14

SNN research is a complex domain that operates at the inter-

section of electronics, computer science, neurobiology, and ma-

chine learning (ML), as illustrated in Figure 1. Each of these fields 

contributes essential foundational principles for SNN develop-

ment: electronics enables the design of neuromorphic hardware, 

computer science provides programming frameworks and scal-

able implementations, and neurobiology introduces knowledge 

about principles of biological learning mechanisms, which ML 

implements and optimizes.

Importantly, we acknowledge that ‘‘computer science’’ is a 

broad discipline that encompasses many areas, including algo-

rithm design (which overlaps with ML) and hardware-related as-

pects (which are foundational to electronics). In the context of 

this perspective, and as visually represented in Figure 1, our 

use of the term ‘‘computer science’’ is specifically narrowed to 

its role in providing software frameworks and addressing

Figure 1. Spiking neural network domain 
and its key components, emphasizing the 
interdisciplinary nature required to advance 
the field

Three-factor learning rules draw heavily from 
neurobiology for their inspiration (e.g., neuro-

modulatory signals) and are largely implemented 
within the machine learning subdomain. Further-

more, their ultimate practical deployment relies on 
advancements in computer science (software 
frameworks and scalability) and electronics (neu-

romorphic hardware). In our work, we focus 
explicitly on the highlighted subdomain: machine 
learning.

scalability challenges for SNNs. This 

perspective allows us to distinguish be-

tween the principles of biological inspira-

tion, the implementation of learning algo-

rithms, the development of physical 

hardware, and the critical software and 

computational considerations necessary 

to make SNNs practically deployable. 

Integration of these diverse disciplines 

into a cohesive framework remains a 

significant challenge. Differences in meth-

odologies, terminology, and research 

priorities often create gaps between 

theoretical neuroscience, computational 

modeling, and hardware implementa-

tions. ML, while central to modern ad-

vancements, must balance biological 

plausibility, computational efficiency, 

and hardware feasibility to create SNN models that are both func-

tionally powerful and practically deployable. Figure 1 visually rep-

resents this complexity, highlighting that while ML is a dominant 

force, it cannot operate in isolation from the other three fields. 

Consequently, this paper aims to provide a review of the state 

of three-factor learning from an ML perspective. In parallel, we 

want to emphasize the complexity of the discipline and the 

necessary cross-domain research collaboration to properly 

merge knowledge from all the fields shown in Figure 1. To 

achieve this, a series of papers were analyzed, highlighting the 

following:

(1) Interdisciplinary perspectives: this review explores three-

factor learning in SNNs from both theoretical and practical 

viewpoints, highlighting the convergence of neuroscience 

and AI. 15,16

(2) Neuromodulatory mechanisms: it emphasizes how the 

third factor, global modulatory signals such as dopamine, 

can steer synaptic changes beyond standard STDP, 

improving adaptive behaviors and learning efficacy. 17,18

(3) Cognitive modeling and robotics: the discussion covers 

real-world implications, showcasing how three-factor 

learning enables robust, context-aware SNN applications 

in tasks ranging from decision-making to autonomous 

navigation. 19,20

(4) Scalability and encoding strategies: it addresses key 

challenges in scaling three-factor learning to larger
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networks, including computational constraints, diverse 

spike-encoding approaches, and the need for efficient 

hardware support. 21,22 

(5) Future opportunities: finally, it describes promising ave-

nues for cross-domain research, bridging the gaps be-

tween theoretical models and applied technologies to 

further advance three-factor learning in SNN. 11,23

In addition to summarizing current advances, this paper iden-

tifies research gaps, offering recommendations for future direc-

tions that address these limitations through interdisciplinary syn-

thesis. Due to the fact that three-factor learning and SNNs are 

still part of a widely unexplored and emerging discipline, our re-

view approach does not strictly conform to any systematic re-

view methodologies, such as the PRISMA or Kitchenham guide-

lines. 24,25 In the following sections, we present and evaluate 

various categories that highlight different aspects of the re-

viewed papers. The categorization we propose is inherently 

approximate, as the boundaries between categories are often 

indistinct and overlap. Nevertheless, this classification repre-

sents our best effort to introduce a structured framework for 

reasoning about this highly heterogeneous, rapidly evolving, 

and still-nascent field.

THEORETICAL FOUNDATIONS OF THREE-FACTOR 
LEARNING

The concept of three-factor learning is presented in Figure 2, 

with its roots appealing to biological neural mechanisms. We 

seek to clarify this mapping by detailing how specific neurobio-

logical mechanisms, such as the roles of various neuromodula-

tors and the dynamics of synaptic plasticity, are translated into 

the algorithmic design and functional improvements observed 

in SNNs.

In the human brain, learning is not solely driven by local synap-

tic activity but is heavily influenced by global signals, such as 

neuromodulators: dopamine, serotonin, and acetylcholine. 17,26 

These signals regulate synaptic plasticity, allowing the brain to 

adapt based on rewards, motivation, and contextual informa-

tion. 12,27 A visualization of this rule is shown in Figure 2. 

Research in neuroscience has shown that STDP is insufficient 

to fully explain complex learning behaviors. 10,28 The introduction 

of a third factor in learning models aligns with the findings on how 

global neuromodulatory systems interact with local synaptic pro-

cesses. For example, dopamine has been linked to reward-

based learning, playing a critical role in the reinforcement 

learning (RL) mechanisms observed in biological systems. 29,30 

This inspiration has led to the development of computational 

models that attempt to replicate these dynamics in artificial 

SNNs 14,31 by combining various algorithmic implementations 

of local learning rules, such as STDP, with third-factor signals, 

carrying information about the global state of the neuronal 

system.

The concept of three-factor learning has evolved over several 

decades and is shaped by both theoretical and experimental ad-

vances. Early research on synaptic plasticity emphasized two-

factor models, such as Hebbian learning and STDP. 9,13 How-

ever, these models faced limitations in explaining reward-driven 

behaviors and long-term adaptations observed in biological 

systems. 17,32

In the late twentieth century, neuroscientists began to uncover 

the role of neuromodulators, such as dopamine, in RL. 33,34 The
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Pre-synaptic
neuron 1

Pre-synaptic
neuron 2

Pre-synaptic
neuron 3

Post-synaptic
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Third factor
modulator g

Synaptic weight w update rule:
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Figure 2. The general overview of the three-factor learning principle demonstrates how synaptic weights are modified based on local activity 
and the influence of a third factor

This third factor is crucial for integrating contextual or reward-based information, which serves as a key enhancement over standard Hebbian learning and spike-

timing-dependent plasticity in spiking neural networks (SNNs). This approach constitutes a high-level method for developing training algorithms that utilize 
globally modulated local plasticity rules within SNN systems.
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discovery of dopamine involvement in reward prediction errors 

led to the formulation of models that incorporated an additional 

global factor in synaptic updates. 15,35 These models demon-

strated improved learning capabilities in both simulations and 

empirical studies. 7,36

By the early 2000s, the computational neuroscience and ML 

communities started to converge on the importance of three-fac-

tor learning. Research focused on developing algorithms that 

balance local synaptic updates with global feedback signals, re-

sulting in enhanced performance for tasks that require long-term 

planning, decision-making, and contextual adaptation. 21,37 

Today, three-factor learning is recognized as an important 

component in bridging the gap between biological plausibility 

and artificial learning systems. 11,38

Currently, the field of three-factor learning in SNNs is charac-

terized by a growing consensus on the importance of integrating 

local and global learning signals. 16,39 Researchers have devel-

oped various algorithms that take advantage of neuromodula-

tory influences to improve network adaptability and learning ef-

ficiency. 3,40 These advancements have contributed to 

improved performance in tasks requiring temporal memory, 

reward-based learning, and complex decision-making. 5,6,41 

Experimental studies have shown that incorporating three-

factor learning mechanisms can enhance the stability of network 

dynamics. 18,42 This is particularly important in tasks where net-

works must balance exploration and exploitation or operate un-

der delayed reward conditions. 19,43 Computational models now 

commonly simulate neuromodulatory effects, enabling more 

biologically plausible learning processes. 44,45

Despite these improvements, several challenges remain. Scal-

ability for large networks, the design of efficient hardware plat-

forms, and the use of real-world datasets are areas where further 

research is needed. 46,47 Furthermore, there is ongoing work to 

unify disparate approaches under a cohesive theoretical frame-

work that connects biological mechanisms with artificial imple-

mentations. 48,49 As a result, current research is focused on 

cross-disciplinary efforts that aim to refine both the theoretical un-

derstanding and practical applications of three-factor learning. 1,11

Neuromodulatory influence on synaptic plasticity 

Neuromodulation plays a crucial role in synaptic plasticity by 

integrating intrinsic and extrinsic signals that affect neuronal in-

teractions and learning dynamics. In this section, we will 

formalize the learning rules discussed and show how synapse 

modulation could be manifested on the basis of insights from 

neuroscience.

STDP and effects of third-factor modulation

The STDP can be regarded as an application of Hebb’s postu-

late, 9 worded as ‘‘neurons that fire together, wire together.’’ 

This intuitive statement indicates that synapses for which pre-

synaptic and postsynaptic spiking activity coincide temporally 

result in a synaptic weight change:

Δw t = 

{
e − Δt=τ + ; Δt > 0 
e Δt=τ − ; Δt < 0

; (Equation 1)

where Δw t is the change in synaptic weight at time t, Δt = t post − 

t pre is the timing difference between pre- and postsynaptic 

spikes, and τ + and τ − are time constants that control the decay 

of the STDP window.

Thus, if presynaptic spikes directly precede postsynaptic 

spikes, we observe long-term potentiation (LTP), resulting in an 

increase in synaptic weight. If the opposite is true, long-term 

depression (LTD) occurs, and the synaptic weight decreases. 

The shape of LTD and LTP windows is controlled by the hyper-

parameter τ.
In general, we can simplify the above equation as a function of 

presynaptic and postsynaptic spikes:

Δw t = H 
( 
t pre ; t post 

) 
; (Equation 2)

where H(⋅) is a function governing synaptic plasticity. The intro-

duction of the third factor extends the STDP rule in the following 

form:

Δw t = H 
( 
t pre ; t post ; g t 

) 
; (Equation 3)

where g is the modulatory signal affecting the neuron at time t. 

This third-factor signal can broadly influence the dynamics of 

base synaptic plasticity. 26 Based on neurobiological knowl-

edge, 12 synaptic neuromodulation can induce effects such as 

amplifying the weight change, reversing the STPD window 

(swapping LTD with LTP on the timescale), changing the widths 

of the LTP and LTD windows, or even gating the occurrence of a 

synaptic weight modification. Visualization of these exemplary 

effects can be seen in Figure 3.

Spatial and temporal aspects of third-factor modulation 

One of the fundamental problems with respect to the use of 

three-factor learning rules is the spatial and temporal aspects 

of modulatory signal effectiveness. The relationships between 

neuromodulators in these domains are notoriously complex 

and difficult to observe in biological systems. 26 Although the 

temporal properties of modulatory signals have already been 

incorporated into the discussed equations, spatial properties 

should also be included. Thus, we refer to the concepts of 

intrinsic and extrinsic neuromodulation, which are graphically 

described in Figure 4.

Intrinsic neuromodulation

Intrinsic neuromodulatory signals are exchanged between neu-

rons within the same neuronal circuit. Neurons are considered 

to be within the same local network if they coincide 26 in one of 

the following ways.

(1) Spatially, when they are physically close to each other 

within a specific region of the brain or a neural circuit. 

Their proximity allows for direct and rapid communica-

tion, often forming dense local connections. 50

(2) Functionally, when they work together to perform a 

specific task or contribute to a common computation. 

They might be located in different physical locations 

but are interconnected and co-activated during partic-

ular brain activities, such as processing a specific 

type of sensory input or generating a certain motor 

output. 51

(3) Morphologically, when they have similar structural char-

acteristics, such as their shape, dendritic branching pat-

terns, or axonal projections. Neurons with similar 

morphology often have similar physiological properties 

and connectivity patterns, leading them to be part of the 

same functional unit or local circuit. 52
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It can be said that intrinsic neuromodulation serves as a 

‘‘memory’’ that adjusts the dynamics of the local network based 

on its recent and current activity. 53 An intrinsic neuromodulatory 

signal can be described as

gintr
t = f intr

( 
N it; N p t ;S 

intr 
t

) 
; (Equation 4)

where f intr describes how the state S intr of the internal network 

determines the local neuromodulatory effect between neurons 

N i and N p at time t.

Extrinsic neuromodulation

Signals from external neural networks influence other circuits by 

providing information on their ongoing activity. 53 The modulatory 

signal that affects a population of neurons P at time t can be 

defined as

gext
t = f ext 

( 
P t ;S 

ext 
t

) 
; (Equation 5)

where S ext is a state of the external neuronal circuit. 

Extended synaptic plasticity function

Based on the concepts discussed so far, we can formulate a 

more detailed model for synaptic plasticity, which incorporates 

weighted contributions from different factors, as well as spatial 

and temporal properties of all signals influencing plasticity of a 

given synapse.

Δw t = H 
( 
t pre ; t post ; g 

intr
t ;g

ext
t

) 
(Equation 6)

This formulation highlights how intrinsic and extrinsic neuro-

modulatory factors contribute to synaptic plasticity, ultimately 

shaping learning and adaptive behaviors in neural networks. 

We note that the presented equations can be further extended 

and that their presented derivation is not exhaustive due to the 

complexity of the plasticity phenomena.

A note on backpropagation through time

While three-factor learning rules offer a biologically plausible 

approach to training SNNs, it is important to acknowledge the 

role of backpropagation through time (BPTT) based on surrogate 

gradients. 54,55 Both of those topics are extensive and beyond 

the scope of this perspective, yet we will briefly describe them 

to provide an overview of the problems encountered when 

training SNNs and their relationship with biologically plausible

learning methods. The surrogate gradient method enables 

gradient-based learning in SNNs by approximating neuron 

spiking activity with a continuous function, which allows error 

backpropagation. 56 BPTT enables one to perform backpropaga-

tion in the temporal domain, which is inherent in SNNs. The com-

bination of these methods allows for effective training of deep 

SNN architectures with the well-known approaches established 

in deep learning research. Furthermore, the performance 

achieved when using them is robust, closely compared to that 

observed with classic deep neural networks. 2 Recent empirical 

studies demonstrate that BPTT, combined with surrogate 

gradient methods, has achieved high performance across a 

wide spectrum of tasks, benefiting from optimized software 

and hardware support. 57 However, BPTT in its standard form, 

based on direct derivative computation over time, faces several 

challenges. Firstly, the computational cost and memory footprint 

of BPTT can be substantial, especially for long input sequences, 

due to the need to store neuron states at each time step. This 

also implies relatively slow processing, as the system—gradient 

computation for consecutive steps—is sequential in nature. Sec-

ondly, BPTT can suffer from problems with the stability of the 

training process, as vanishing or exploding gradients can hinder 

the learning of long-range temporal dependencies. 58 Lastly, 

BPTT is limited in terms of online learning, as it requires an orig-

inal input sequence to be available before the error is backpropa-

gated, thus making it non-causal. In general, BPTT is considered 

biologically implausible, as it deviates from the local learning 

mechanisms observed in the brain. 59 The ongoing research 

aims to address these limitations by exploring memory-efficient 

BPTT techniques, such as activation checkpointing and trun-

cated BPTT, 59,60 and developing more biologically inspired ap-

proximations, such as local learning rules and eligibility trace 

propagation. 5,6,61 Despite the highlighted shortcomings of 

BPTT in its classical form, there are efforts to bypass them. 

BPTT can be considered as a general group of algorithms that 

are capable of propagating the global error signal over time. 

These approaches leverage a BPTT-like mathematical founda-

tion to derive online and biologically plausible learning rules 

for SNNs. This new perspective challenges the traditional 

dichotomy between BPTT and local Hebbian-style plasticity 

rules. A prominent example of such an approach is an E-prop 

algorithm, 5,6 an online learning method that leverages a

A B C

Figure 3. Possible influences of third factor 
on spike-timing-dependent plasticity 
learning rule

(A) This plot shows baseline spike-timing-depen-

dent plasticity (STDP), where synaptic weight 
change (Δw) depends on the relative timing (Δt) of 
pre- and postsynaptic spikes.

(B) This plot illustrates reversed STDP, where the 
LTD and LTP polarities are flipped.

(C) This plot demonstrates STDP shape modula-

tion, where neuromodulatory factors influence 
the temporal profile of plasticity, modifying the 
learning window width. This highlights the 
numerous possibilities for how the third factor can 
influence local learning rules when designing 
training algorithms for spiking neural networks 
(SNNs). By modulating the STDP window, the third 
factor (representing signals like dopamine) en-

ables SNNs to exhibit more complex and biologically plausible learning behaviors, such as reward-modulated plasticity or context-dependent learning, which are 
essential for tasks in reinforcement learning and cognitive modeling.
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mathematical refactoring of gradient descent, similar to BPTT, 

but in a biologically plausible manner. It replaces the need for 

backward-in-time propagation with a combination of eligibility 

trace based on local spiking activity and global learning signals, 

closely matching the performance of derivative-based BPTT. 

Currently, BPTT based on surrogate gradients remains the pri-

mary method of training SNNs. However, a growing body of 

research on robust and backpropagation-free methods, such 

as E-prop, offers the potential to increase speed, scalability, 

and energy efficiency while maintaining competitive perfor-

mance. Such advancements would unlock numerous applica-

tions for SNNs, particularly in resource-constrained environ-

ments and online learning scenarios.

RESEARCH TRENDS

The role of neurobiology in development of bio-inspired 

learning rules

In this section, we describe the fundamental neurobiological 

principles that have influenced the design and development of 

bio-inspired learning rules, with a particular focus on three-factor 

learning. We explore how advances in understanding neuromo-

dulation, synaptic plasticity, and neural circuit function provide 

the foundation for these algorithms. By examining these mecha-

nisms, we aim to illustrate the origins of three-factor learning and 

underscore the importance of incorporating such biological 

complexity to enhance the plausibility and capabilities of artificial 

learning systems. Advances in neuroscience have contributed to 

our understanding of neuromodulation, synaptic plasticity, and 

neural circuit function. From the perspective of three-factor 

learning, knowledge on how neuromodulators such as dopa-

mine, acetylcholine, norepinephrine, and serotonin influence 

neural activity, synaptic plasticity, and learning 16,26 has greatly 

influenced the development of such algorithms. In biological

systems, neuromodulators influence plastic changes based on 

reward signals, errors, and contextual information. 11,62 Studies 

have shown that neuromodulators can alter the shape and polar-

ity of STDP windows and regulate neuron excitability, firing pat-

terns, and tuning curves. 12,36 Specific findings include the roles 

of dopamine in reward processing, motivation, and memory 

robustness, as well as acetylcholine’s contribution to attention 

and learning rate. 27,63 Furthermore, research has highlighted 

the interaction of multiple neuromodulators, emphasizing their 

role in coordinating different aspects of cognitive functions and 

behavior. 10,64 Synaptic plasticity research has further deepened 

our understanding of mechanisms such as STDP and its varia-

tions, such as reward-modulated STDP (R-STDP). 2,4 Neuromo-

dulators have been shown to gate or modulate STDP, influencing 

synaptic changes by regulating calcium influx and excitatory-

inhibitory balance in neural circuits. 18,65 Studies have also 

explored how different brain regions, such as the hippocampus, 

cortex, and basal ganglia, contribute to cognitive functions such 

as working memory and attention. 13,66 Models have demon-

strated how cholinergic and GABAergic modulation enhances vi-

sual attention and memory stability. 63,67 Neuromodulation has 

been shown to play an important role in homeostatic plasticity, 

the crucial set of mechanisms that maintain stable neural 

network function in the face of ongoing synaptic plasticity and 

activity changes. 68,69 Although synaptic plasticity (Hebbian) is 

essential for learning, homeostatic plasticity counteracts poten-

tial instability by regulating neuronal excitability and synaptic 

strength. 68,70 This regulation prevents runaway potentiation or 

depression, ensuring that the activity of the system remains 

within a functional operating range. 71,72 Key homeostatic mech-

anisms include synaptic scaling, which globally adjusts synaptic 

strength, and intrinsic plasticity, which modifies the intrinsic 

excitability of a neuron. 73,74 Neuromodulators influence these 

homeostatic processes. For instance, dopamine can modulate 

synaptic scaling and intrinsic excitability, affecting the stability 

and plasticity of developing neural circuits. 75,76 Serotonin plays 

a role in the regulation of excitation-inhibition balance, a critical 

aspect of network homeostasis. 69 Acetylcholine contributes to 

firing rate homeostasis and interacts with synaptic scaling mech-

anisms. 77,78 Although the primary form of plasticity discussed in 

ML with SNNs and in this perspective is related to synaptic plas-

ticity, we note the possibility of including homeostatic plasticity 

when developing novel algorithms. The interplay between neuro-

modulators, synaptic plasticity, and homeostatic mechanisms 

underscores the complexity of biological learning. Three-factor 

learning algorithms in SNNs, inspired by these principles, offer 

a powerful framework to capture this complexity. However, to 

truly emulate biological intelligence, future research must move 

beyond isolated mechanisms and strive for a more holistic 

integration. This includes developing models that account for 

dynamic interactions between different neuromodulators, 

context-dependent modulation of STDP, and the stabilizing 

role of homeostatic processes.

Three-factor learning algorithms

A wide range of learning algorithms has been explored in SNNs, 

many inspired by biological mechanisms. Three-factor learning 

rules have gained prominence, introducing a third element, 

such as neuromodulators or error signals, to improve synaptic

Ni Np

External
neuronal circuit

Δwt = H ( tpre , tpost , gt
ext

, gt
intr

 )

gt
ext

gt
intr

gt
intr

Local
neuronal

circuit

Neuronal system

Figure 4. Different sources of the top-level third factor

The signal can be emitted intrinsically between neurons in the same neuronal 
circuit or extrinsically, when the signal arrives from outside of the circuit. 
Neurons that coincide spatially, functionally or morphologically are considered 
to be in the same circuit. 26 Understanding these spatial and temporal aspects 
is crucial for designing SNNs that can leverage both local network dynamics 
and global contextual cues for improved credit assignment and adaptive be-

haviors, mirroring biological learning processes.
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updates. 10,11,62 The fundamental motivation behind three-factor 

learning stems from the need to model biological neural plasticity 

more accurately. Traditional learning approaches often strug-

gled to capture the complex mechanisms of synaptic modifica-

tion observed in biological systems. By introducing a third factor, 

typically a neuromodulatory signal, error signal, or reward signal, 

researchers have developed more sophisticated learning algo-

rithms that can adapt more dynamically to environmental con-

texts. In this section, we describe a selection of research articles 

that demonstrate the applicability of three-factor learning in solv-

ing ML tasks. Several key approaches have emerged in the 

development of three-factor learning rules. In Fré maux et al., 29 

the authors analyze the functional requirements for R-STDP us-

ing a simple set of neurons. They compare R-STDP and R-max 

STDP, where the reward signal acts as an additional multiplier 

of the change in synaptic weight, delivered at the end of a task 

to indicate success. Through trajectory learning and spike train 

response tasks, they explore the theoretical underpinnings of 

reward-modulated plasticity, concluding that effective reward-

based learning requires a small unsupervised term influence, 

sensitivity to reward timing, and a reward prediction mechanism. 

RL principles have been particularly influential in three-factor 

learning strategies. In Fré maux et al., 15 the authors propose a 

continuous-time actor-critic framework for RL in SNNs. They 

explicitly model temporal credit assignment using temporal dif-

ference (TD) learning, where synaptic plasticity is modulated 

by TD error. The approach integrates value and policy networks 

with R-STDP. They evaluated their method in challenging RL 

tasks, including Morris water maze navigation, acrobot, and 

cartpole simulations, demonstrating the effectiveness of their 

approach in complex motor control scenarios. Vasilaki et al. 79 

explored spike-based RL in continuous state and action spaces, 

addressing cases where traditional policy gradient methods fail. 

They propose a feedforward SNN model in which reward modu-

lates the probability of firing sequences propagating from place 

cells (representing agent position) to action cells (controlling 

movement). Synaptic changes are driven by STDP, modulated 

by a biologically plausible third-factor reward signal. The model 

is tested in a simulated water maze task, showcasing its poten-

tial for sophisticated spatial navigation learning. More recent de-

velopments have pushed the boundaries of three-factor 

learning. In Bellec et al., 5,6 the authors introduce the E-prop algo-

rithm, with the aim of approximating BPTT for global error projec-

tion. They take inspiration from the error-related negativity, a 

signal that immediately follows the erroneous behavior in the 

brain. 80 The algorithm achieves results close to BPTT on a vari-

ety of tasks, including speech recognition, word prediction, one-

shot learning, and pattern generation. Building on these founda-

tions, Liu et al. 41 propose MDGL (multidigraph learning rule), an 

innovative algorithm to propagate top-down error signals to spe-

cific neurons in the network, which then propagate them further 

in their local neighborhood. Through comprehensive evaluation, 

they demonstrate that their method closely matches BPTT and 

outperforms E-prop in online learning and pattern generation 

tasks. In a notable contribution, Schmidgall and Hays 46 show 

an interesting approach of using signals obtained with meta-

learning to modulate STDP, which is optimized by gradient 

descent. The synaptic change occurs when a neuromodulatory 

signal appears. They demonstrate the robustness of their solu-

tion by evaluating the network in T-maze navigation, character 

recognition, and cue association tasks. Barry et al. 48 developed 

a method using modulated STDP to gate plasticity, introducing a 

surprise signal derived from error. Their approach involves 

inducing synaptic changes whenever a surprise signal arrives. 

Through rigorous testing in continual learning and rule-switching 

scenarios, they showcase the system’s ability to rapidly adapt 

while maintaining operational stability. Quintana et al. 81 propose 

a novel event-based three-factor local plasticity (ETLP) method 

tailored for online learning with neuromorphic hardware. Their 

approach features a unique architecture where hidden layers up-

date weights through random matrices, and the output neurons 

are connected one to one to excitatory and inhibitory synapses. 

Evaluated on pattern recognition tasks using N-MNIST and SHD 

datasets, ETLP achieves competitive classification accuracy 

with lower computational complexity compared to global 

methods such as BPTT and E-prop. These algorithms collec-

tively aim to improve performance on tasks that require temporal 

memory, decision-making, and context-sensitive learning, with a 

strong emphasis on mimicking the mechanisms found in natural 

neural systems. This emphasis reflects a broader trend toward 

integrating both local synaptic updates and global modulatory 

signals to improve the scalability and efficiency of learning in 

SNNs. 5,6,37 A comparison of three-factor learning algorithms 

and their applications is shown in Table 1.

Datasets

Given the inherent heterogeneity and the involvement of multiple 

domains in three-factor research, the characteristics and types 

of datasets used exhibit significant variation, as presented in 

Figure 5. A significant number of studies are based on synthetic 

or custom-designed benchmarks, which allow precise control of 

experimental variables. 48,90 These datasets simulate tasks such 

as navigation (e.g., 1D and 2D multi-target tasks), robotics (e.g., 

robotic arm reaching and terrain crossing), cognitive tasks (e.g., 

working memory, decision-making, and attention), and pattern 

recognition. 44,46 Custom tasks such as rule-switching, mem-

ory-guided saccades, and associative learning are also 

common. 33,63

In contrast, some studies 4,38,81 incorporate well-known ML 

datasets such as MNIST, 93 Caltech-256, 94 ETH-80, 95 and 

NORB 96 for image recognition or SHD 97 for speech analysis. 

Some of those datasets, especially in image recognition, are 

adapted to have the properties of recordings gathered with 

native neuromorphic sensors. An example of such adoption is 

the N-MNIST dataset, 98 used by Quintana et al. 81 There are 

also cases, especially in neuroscience research, in which exper-

imental data from biological studies are used, including cortical 

slice recordings, optogenetic experiments, and natural scene 

videos. 18,34 However, such studies focus on discovering biolog-

ical mechanisms in living systems. Although they remain crucial 

for the discovery of bioplausible learning mechanisms, such 

studies often do not attempt directly to train SNNs to solve a spe-

cific task using the discovered phenomena. Thus, it can be 

observed that real-world datasets remain underutilized, particu-

larly in studies focusing on theoretical models and neural mech-

anisms. 22,99 This indicates a trend toward task-specific 

simulations over standardized benchmarks. In the future, there 

is a growing need to validate models through greater use of
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Table
 

1. Comparison
 

of research
 

with
 

three-factor learning
 

algorithms

Article Learning
 

algorithm Task Dataset Performance Network
 

size Platform

Chen
 

et al. 
82 R-STDP image

 
reconstruction, 

classification

MNIST, natural 
scene

 
images

89%
 

accuracy (MNIST), 
RMSE

 
0.036

 
(image

 
reconstruction)

4,096
 

neurons, 
1
 

M
 

synapses

neuromorphic
 

chip

Florian
 

14 R-STDP food
 

search biologically 
inspired

 
simulation

learned
 

to
 

find
 

food
 

in
 

<1
 

min

360
 

neurons CPU/GPU

Potjans et al. 
83 actor-critic

 
TD
 

learning

gridworld
 

navigation nontrivial 
gridworld

 
task

latency <
 

10
 

within
 

30
 

trials, RMSE
 

2.7
 

fC

60
 

neurons CPU/GPU

Vigneron
 

et al. 
47 various 

modulated
 

STDP
 

variants

pattern
 

recognition Caltech, MNIST, 
CIFAR-10/100, 
STL-10, DVS

accuracy: 
48.27%–99.1%

 (image), 95%–98%
 (trajectory)

varying, 
typically shallow

CPU/GPU

Alnajjar et al. 
20 modulated

 
STDP obstacle

 
avoidance dynamic

 
physical 

environments

robot adapted
 

smoothly

dynamically adjusted mobile
 

robot

Park
 

et al. 
84 modified

 
segregated

 
dendrites 
algorithm

 

85

image
 

classification MNIST, CIFAR-10 97.83%–98.3%
 (MNIST), 50.8%
 (CIFAR-10)

400
 

on-chip
 

neurons; 
simulated

 
up
 

to
 

1,394
 

neurons

neuromorphic
 

chip

Buhler 
86 locally

competitive

algorithm

image
 

classification MNIST 88%
 

accuracy 512
 

analog
 

neurons neuromorphic
 

chip

Frenkel 
87 spike-driven

synaptic

plasticity

image
 

classification MNIST 84.5%
 

accuracy 256
 

neurons, 
64,000

 
synapses

neuromorphic
 

chip

Allred
 

and
 

Roy 
49 dopamine-

modulated
 

STDP

unsupervised
 

lifelong
 

learning

MNIST 95.24%
 

accuracy 400–6,400
 

neurons CPU/GPU

Mozafari et al. 
4 R-STDP image

 
classification MNIST 97.2%

 
accuracy 6-layer Conv SNN CPU/GPU

Uluda� g et al. 
88 modulated

neuron

go/no-go
 

decision simulated
 

data not specified
 

(energy focus)

8,381
 

neurons, 
252,987

 
synapses

neuromorphic
 

chip

Liu
 

et al. 
41 MDGL

 
(multidigraph

 
learning

 
rule)

pattern
 

generation, 
delayed

 
match, 

evidence
 

accumulation

simulated
 

data loss-function
 

values not specified CPU/GPU

Bellec
 

et al. 
5,6 E-prop pattern

generation, 
store-recall, 
speech

 
recognition, 

copy-repeat, word
 

prediction

TIMIT, Penn
 

Treebank

MSE
 

0.01; <5%
 misclass; 62.9%
 acc; 74

 
char seq; 

perplexity 113

20–600
 

recurrent 
neurons; 200–256

 
LSTM

 
(long

 
short-term

 
memory) cells

CPU/GPU

Quintana
 

et al. 
81 ETLP event-based

 
pattern

 
recognition

N-MNIST, SHD 94.30%
 

(N-MNIST), 
74.59%

 
(SHD)

1,170
 

and
 

2,274
 

neurons

CPU/GPU; FPGA
 

(field-programmable
 

gate
 

array)

(Continued
 

on
 

next page)
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Table
 

1. Continued

Article Learning
 

algorithm Task Dataset Performance Network
 

size Platform

Rostami et al. 
89 E-prop KWS

 
(keyword

 
spotting) Google

Speech

Commands

91.2%
 

accuracy 20–360
 

neurons neuromorphic
 

chip

Zambrano
 

et al. 
90 CT-AuGMENT saccade

 
tasks, 

match
 

to
 

category, 
motion

 
tasks

simulated
 

data 95%–99%

high
 

convergence
 

rates

14–22
 

neurons CPU/GPU

Barry and
 

Gerstner 
48 SpikeSuM volatile

 
sequence

tasks with
 

rule
 

switching

simulated
 

data up
 

to
 

100%
 

detection up
 

to
 

1,000
 

neurons CPU/GPU

Schmidgall and
 

Hays 
46 Meta-

SpikePropamine

cue
 

association, 
one-shot classification

simulated
 

and
 

character 
recognition

 
dataset

95.6%
 

(cue); 
79.6%

 
(char)

20–196
 

neurons CPU/GPU

Mikaitis et al. 
91 dopamine-

modulated
 

STDP

Pavlovian
 

conditioning simulated
 

data not stated
 

(efficiency focus)

10–10,000
 

neurons, 
10
 

M
 

synapses

neuromorphic
 

chip

Frenkel et al. 
92 feedforward

 
eligibility traces

hand
 

gesture, 
KWS, 
navigation

IBM
 

DVS
 

Gestures, SHD, 
synthetic

87.3%
 

(gestures), 
90.7%

 
(KWS), 

96.4%
 

(nav)

up
 

to
 

256
 

neurons, 
64,000

 
synapses

CPU/GPU

Vasilaki et al. 
79 modulated

 
STDP Morris water maze simulated

 
data solved

 
task

 
correctly 700

 
neurons CPU/GPU

Legenstein
 

37 reward-modulated

STDP

3D
 

cursor control experimental data reproduced

credit assignment; 
good

 
agreement

480
 

neurons CPU/GPU

The
 

performance
 

of other learning
 

algorithms that are
 

often
 

included
 

comparatively are
 

not included
 

in
 

the
 

table. RMSE, root-mean-square
 

error.
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real-world data, ensuring that the proposed learning algorithms 

are robust in diverse environments and applications. 7,19 Further-

more, applied SNN research would greatly benefit from estab-

lishing a wide set of standard neuromorphic datasets, compara-

ble to MNIST or ImageNet for classic deep learning. The number 

of such datasets is growing, 97,98 yet it remains a challenge, often 

demanding specialized neuromorphic hardware and precise 

experimental setups. In addition, SNN applications span various 

domains, making standardization a persistent challenge.

Application domains

Research on three-factor learning in SNNs spans multiple scien-

tific and technological domains, with neuroscience and neurobi-

ology forming the foundation of many studies. 26,30,34,66 

An important line of study is the modeling of neural circuits in 

brain regions, such as the hippocampus, cortex, and basal 

ganglia, to investigate the mechanisms underlying synaptic 

plasticity: STDP, neuromodulation, and neurotransmitter influ-

ences. 16,42,100,101 Biological studies on three-factor learning 

rules highlight the ability of these algorithms to better capture 

cognitive processes such as memory, attention, decision-mak-

ing, and brain rhythms. 11,18,33,102 Many of these approaches 

are validated with experimental data from in vitro and in vivo 

studies, showing the occurrence of such processes in living neu-

ral systems. 29,79 Beyond neuroscience, three-factor learning is 

explored in the domains of ML, robotics, and neuromorphic 

computing. 1,5,6,38,83 Traditional Hebbian and STDP-based 

learning often struggle with credit assignment over long time-

scales and stability, whereas three-factor learning integrates a 

modulatory signal that refines synaptic weight updates based 

on task-relevant feedback. 103,104 These algorithms are particu-

larly promising for tasks that require real-time decision-making, 

continuous learning, and resilience to environmental changes.

Robotics and cognitive modeling have also benefited from 

three-factor learning. Neuromodulated SNNs enable adaptive 

motor control, navigation, and sensor fusion, allowing agents 

to operate effectively in dynamic environments. 20,23,43,46 Many 

studies develop neuromorphic controllers that incorporate 

reward-modulated plasticity for RL, optimizing behavior through 

experience-dependent synaptic changes. In computer vision 

and sensory processing with SNNs, three-factor learning has 

been applied to pattern recognition, object classification, and 

feature extraction. 4,41 Compared to pure STDP, these ap-

proaches improve generalization and robustness, particularly 

in unsupervised or RL settings. Other research explores affective 

computing, where neuromodulation is used to simulate adaptive 

emotional responses in AI systems, influencing decision-making 

and learning strategies. 31,43 Lastly, a growing area of interest is 

neuromorphic hardware, where SNNs with three-factor learning 

are being implemented on specialized architectures for energy-

efficient computation. 4,83,92,105 Such solutions enable effective 

inference and on-chip learning, crucial in domains such as ro-

botics. In the following sections, we discuss the topics related 

to dedicated hardware for three-factor learning. In Figure 6, we 

try to summarize the distribution of the research domains in 

the papers we focus on in this perspective. Additionally, in 

Figure 7, we show the distribution of scientific disciplines that 

are predominant across the reviewed papers. In the context of 

the theoretical domain division in SNN research, as presented 

in Figure 1, we can see that the field of three-factor learning is 

predominantly analyzed from the perspective of neurobiology 

and ML, leaving the electronics (hardware) and computer sci-

ence (computational aspect) relatively underrepresented, 

showing the need for further research.

Applications in AI and robotics

Neuromodulation and three-factor learning have influenced ad-

vances in AI and robotics, with applications focusing on adaptive 

control and navigation. Studies highlight how neuromodulated 

learning enables robots to navigate, avoid obstacles, and manip-

ulate objects in dynamic environments. 19,20 Adaptive robotic 

control can be achieved through three-factor learning rules in 

SNNs, allowing robots to learn and adjust to new terrains and 

tasks in real time. 23,48 Some models use hierarchical control 

structures inspired by biological systems, such as the nervous 

system of Aplysia, to enhance autonomous navigation. 14,45 In 

addition, emotion-modulated RL has been explored to improve 

robot adaptability by adjusting learning rates and reward predic-

tions based on neuromodulatory influences such as dopamine 

and acetylcholine. 31,64 The integration of real-world sensors 

with neural networks further supports adaptive behavior in com-

plex environments, where rapid adaptability and online learning 

are crucial. 7,22 Neuromodulation in SNNs can also be achieved 

using RL, an established method in the field of robotics and 

autonomous systems. 106 Actor-critic frameworks and R-STDP 

can be used to improve temporal credit assignment and deci-

sion-making processes. 42,104 Continuous-time RL mechanisms, 

combined with working memory features, enable evidence 

accumulation and better control of agents in dynamic sce-

narios. 41,90 Cognitive and affective AI applications focus on neu-

romodulated architectures that simulate emotional influences, 

using neurotransmitter analogs such as dopamine and serotonin

Figure 5. Datasets used in research papers investigating three-

factor learning in spiking neural networks

The prevalence of custom and simulated datasets in three-factor SNN 
research, as shown in this figure, highlights a current limitation in the field. To 
ensure the robustness and real-world applicability of three-factor learning al-

gorithms, there is a clear need for greater utilization of standardized, real-world 
neuromorphic datasets, which would facilitate more comparable and rigorous 
evaluation of learning performance.
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to improve creativity, decision-making, and memory alloca-

tion. 31,43 Lifelong learning is also supported by mechanisms 

such as surprise-modulated plasticity and controlled forgetting 

through dopaminergic modulation. 17,49 Additional studies apply 

these innovations to pattern recognition, image classification, 

and decision-making tasks, often optimizing neuromorphic

hardware models to improve energy efficiency and scalabil-

ity. 4,47 These advances reflect a multidisciplinary effort to create 

biologically inspired, robust, and adaptive systems capable of 

real-time learning and adaptation in uncertain environments.

Thus, SNNs using three-factor learning show promise for

advancing the domain of edge devices and robotics, especially 

because of their remarkable energy efficiency and adaptability.

Scalability considerations

Scalability is a critical challenge in all computational methods, 

including SNNs. However, in the domain of SNNs, measurement 

of computational complexity and required resources is much 

more challenging than for any software deployed on CPUs or 

GPUs. The reason for this is the unique and asynchronous 

mode of operation of these networks, as neuronal signals are 

propagated sparsely over time. Thus, full exploitation of their 

properties is tightly coupled with the neuromorphic hardware 

that is used to deploy them. The co-design of software and hard-

ware in SNNs is beyond the scope of this perspective, yet the 

awareness of its importance is growing. 92,105,107,108 Currently, 

most research in the domain of SNNs and three-factor learning 

either omits the computational complexity of proposed algo-

rithms or tries to summarize it using the theoretical number of op-

erations performed during the runtime. However, standard 

complexity measures, such as floating-point operations 

(FLOPs), commonly used in deep learning, are insufficient for 

SNNs due to their fundamentally different mode of computation. 

Unlike ANNs, which perform dense matrix multiplications at each 

layer, SNNs operate in an event-driven manner, where computa-

tions are sparse and depend on spike occurrences. A common 

alternative is to count the number of accumulated operations, 

which refer to additions performed when integrating spikes 

incoming to a neuron. 109 This contrasts with traditional ANNs, 

where operations typically involve multiply accumulate (MAC) 

computations due to weight multiplications in dense layers. In 

some cases, authors also rely on classical big-O complexity 

analysis. 81 Although useful for rough estimations, such methods 

remain limited because they do not account for hardware-spe-

cific optimizations, memory constraints, or differences in execu-

tion models, all of which can significantly impact the real-world 

efficiency of SNN implementations. 105,110,111 Scalability and 

computational requirements are necessary to fully evaluate the 

system’s usefulness when deployed; therefore, establishing reli-

able metrics is necessary. We envision that in the future, 

measuring computational efficiency and scalability of SNNs, 

together with the used learning algorithms, will inherently 

depend on the used neuromorphic platform.

Encoding methods

Methods of encoding analyzed data in spike trains that serve 

as input to SNN play a fundamental role in determining their per-

formance and efficiency. 112 Neuroscience research has discov-

ered that neurons use numerous encoding schemes in the 

brain. 113–116 While important, their full description is beyond 

the scope of this perspective. Thus, we will briefly describe 

only the selected ones to highlight their trade-offs and comple-

mentarity, as well as popularity in three-factor learning research. 

Rate encoding is the most widely used encoding method in SNN 

research in general. It represents information through the

Figure 6. Application domains of SNN research reviewed in 
this work

The significant percentages in areas like robotics and navigation, cognitive and 
memory tasks, and decision-making and control underscore the potential of 
three-factor learning for creation of adaptive and biologically plausible AI 
systems capable of complex behaviors in dynamic environments.

Figure 7. Primary scientific domain across reviewed research 
articles in the domain of three-factor learning, highlighting the 
strong foundational role of neurobiology and ML in the current 
landscape of three-factor learning research

The relatively smaller contributions from computer science and hardware 
signal a need for further interdisciplinary research to fully realize the potential of 
three-factor learning in scalable and energy-efficient neuromorphic 
computing.
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frequency of spikes, making it simple and compatible with neu-

romorphic hardware. It is also easily used for converting non-

temporal data into the spiking representation. Using the example 

of static images, the intensities of individual pixels are treated as 

probabilities of spike occurrence in a given timestep. Temporal 

encoding methods leverage precise spike timing to convey infor-

mation. They exist in many variations, but the core idea behind 

them is to emphasize the spikes that arrive earlier as the ones 

carrying more information. 117 Temporal encoding methods usu-

ally lead to lower computational complexity, as the network 

emits a lower number of spikes. 112 Lastly, we note the idea of 

fully adaptive encoding. It refers to the set of methods that 

employ parametrized neural network layers that can learn the 

spike representation of input data. 46 It is still rarely used among 

SNN researchers, yet neuroscientific evidence shows its impor-

tance in biological neural systems, indicating the possibility of 

further exploration. 118 It is important to note that the type of en-

coding can be related to input data encoding or intraneuron 

communication in the network. However, most often, the same 

encoding is applied for both cases. Each encoding strategy pre-

sents trade-offs between efficiency, biological plausibility, and 

ease of hardware implementation. Figure 8 provides a summary 

of the encoding methods used in the literature analyzed in this 

perspective. We consider only the type of input encoding, which, 

in most cases, also translates to neuronal communication in the 

network.

The distribution of encoding methods shown in Figure 8 under-

scores the widespread reliance on rate encoding, which consti-

tutes almost 50% of the approaches used in the research of the 

analyzed papers. This prevalence comes from its straightforward 

implementation and compatibility with neuromorphic hardware,

despite its relatively lower temporal precision and increased 

computational cost. 112 Time-based encoding follows as the sec-

ond most utilized method, at 25.4%, reflecting the increasing 

emphasis on spike timing as a means of improving computa-

tional efficiency. Phase encoding and adaptive encoding were 

used in only 1.5% of the articles for both methods. Although 

beneficial, their lower popularity may indicate that the use of 

such encoding methods is yet to be explored. The remaining 

22.4% of articles were related to experimental neuroscience, 

simulations of neuronal dynamics, or other studies where input 

encoding was either not explicitly stated or not directly relevant. 

This distribution suggests that, while rate-based encoding re-

mains dominant, alternative strategies, particularly time-based 

approaches, are gaining traction as researchers explore more 

efficient and biologically plausible representations of neural in-

formation. This is especially relevant when considering the 

deployment on specialized hardware, where relying solely on 

rate coding can lead to increased computational cost. 112 Addi-

tionally, increasing the expressiveness of SNNs would require 

further exploration for determining optimal neural coding pat-

terns both for input data and neuronal communication. Finally, 

we emphasize that the uniqueness of three-factor learning 

methods lies also in their general applicability for synaptic plas-

ticity rules, irrespective of the chosen encoding method.

Hardware and computational platforms

The development in the design and manufacturing of neuromor-

phic hardware has led to the emergence of numerous applica-

tions that deploy SNNs on such chips. 119 This choice of 

computing platforms significantly impacts the scalability and ef-

ficiency of SNN simulations. While traditional platforms such as 

CPUs and GPUs dominate, neuromorphic hardware is gaining 

attention for its potential in energy-efficient processing. The 

overview of neuromorphic chip research utilizing three-factor 

learning can be seen in Table 2. Despite the growing number 

of SNN applications on neuromorphic chips, examples of appli-

cations of three-factor learning on such chips are limited. In a 

work by Mikaitis et al., 91 the authors show the effectiveness of 

this learning rule in solving the problem of credit assignment in 

the Pavlovian conditioning task on the Spinnaker 120 chip. The 

proposed solution was compared with the GPU-based alterna-

tive, where neuromorphic implementation has shown a reduced 

runtime when scaling the number of synapses. Rostami et al. 89 

show an implementation of E-prop in the Spinnaker2 proto-

type. 121 They compare the three-factor method with BPTT, 

matching the performances of ANN models on the Google 

Speech Commands dataset. 122 Uluda� g et al. 88 used Loihi2 110 

to create a model inspired by the basal ganglia to solve the go/ 

no-go task, where synaptic plasticity was modulated by a signal 

that mimics the role of dopamine. A growing body of work show-

cases the effectiveness of three-factor learning on custom-made 

neuromorphic platforms. Recently, Frenkel and Indiveri intro-

duced the ReckOn neuromorphic accelerator to train recurrent 

neural networks. 105 This chip also enables three-factor learning 

based on the adapted E-prop algorithm. They demonstrate the 

feasibility of on-chip training via the aforementioned algorithm 

to obtain a network-solving navigation task with similar effective-

ness to BPTT. In previous work introducing ODIN (online-

learning digital spiking neuromorphic processor) and SPOON

Figure 8. Overview of input-encoding methods in SNNs, highlighting 
the predominance of rate encoding and the increasing adoption of 
time-based and hybrid encoding strategies

The choice of encoding method directly influences how temporal spike pat-

terns interact with neuromodulatory signals in three-factor learning rules, im-

pacting the learning efficiency and biological plausibility of SNN models. The 
limited adoption of adaptive and phase encoding suggests potential areas for 
further exploration to enhance the expressiveness of SNNs using three-factor 
learning.
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Table
 

2. Comparison
 

of research
 

on
 

neuromorphic
 

chips
 

with
 

support for three-factor learning

Platform
 

and
 

author

No. of neurons, 
no. of synapses Learning

 
algorithm Energy usage Task Dataset Performance Technology

ODIN
 

chip, 
Frenkel et al. 

92

256
 

neurons

(10
 

used), 
64,000

 
synapses

spike-driven
 

synaptic
 

plasticity (SDSP) for 
on-chip

 
online

 
learning;

BPTT
 

for off-chip
 

learning

prediction
 

cost: 15
 

nJ

image
 

classification 6,000
 

MNIST
 

samples (16
 
×
 

16
 

downsampled)

accuracy: off-chip
 

learning: 91.4%; 
on-chip

learning: 84.5%

digital, 28-nm
 

FDSOI CMOS

SPOON
 

chip, 
Frenkel et al. 

87

Conv. core:

10
 

5
 
×
 

5
 

kernels, 
256

 
synapses 

(parameters);

FC
 

(fully connected) 
core: 138

 
neurons, 

64,000
 

synapses

direct random
 

target 
projection

algorithm
 

123

for on-chip
 

learning; 
BPTT

 
for off-chip

 
learning

prediction
 

cost: 
MNIST: 313

 
nJ; 

NMNIST: 665
 

nJ

image
 

classification MNIST, N-MNIST accuracy (MNIST/ 
NMNIST): off-chip

 
learning: 97.5%/ 
93.8%; on-chip

 
learning: 95.3%/93%

digital, 28-nm
 

FDSOI CMOS

10-nm
 

FinFET
 

chip,

Chen
 

et al. 
82

4,096
 

neurons,

1
 

M
 

synapses

STDP, R-STDP
 

for 
on-chip

 
learning; 

BPTT

for off-chip
 

learning

prediction
 

cost: 
1.0–1.7

 
μJ

image
 

reconstruction,

de-noising, image
 

classification

MNIST, natural 
scene

 
images

accuracy (MNIST
 

classification): 
on-chip

 
learning, 

R-STDP: 89%; 
off-chip

 
learning, 

BPTT: 98.60%

digital, 10-nm
 

FinFET
 

CMOS

ReckOn
 

chip, 
Frenkel

and
 

Indivieri 
105

up
 

to
 

256
 

recurrent 
neurons, 16

 
output 

neurons, 132,000
 

synapses (8-bit)

modified
 

E-prop
 

algorithm

prediction
 

cost: 
0.6–42

 
nJ; training

 
step

 
cost: 1.5–178

 
nJ

hand
 

gesture
 

recognition, 
keyword

 
spotting, 

navigation

IBM
 

DVS
 

Gestures, 
Spiking

 
Heidelberg

 
Digits (KWS), 
synthetic

accuracy: 87.3%
 (gestures), 90.7%
 (KWS), 96.4%

 
(nav)

digital, 28-nm
 

FDSOI CMOS

Loihi 2, 
Uluda� g et al. 

88

up
 

to
 

1,048,576
 

neurons,

120
 

M
 

synapses 
(used:

8,381
 

neurons, 
252,987

 
synapses)

task
 

solved
 

by 
pre-configured

 
neurons

modulated
 

with
 

third
 

factor

single
 

timestep
 

cost: ∼5.665
 

μJ

go/no-go

decision-making
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(on-chip
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(spiking online-learning convolutional neuromorphic processor) 

chips, 87,92 Frenkel et al. also demonstrated a successful deploy-

ment of reward-based on-chip learning to perform digit classifi-

cation on the MNIST dataset. 93 Other research groups have also 

proposed their own chips with three-factor online learning capa-

bilities, showing their effectiveness and energy efficiency in the 

MNIST classification 82,84,86

The relative scarcity of solutions implementing three-factor 

learning on neuromorphic chips points toward a possible unex-

plored research direction. Most modern neuromorphic systems 

support reward signals by design. 124 Furthermore, a growing 

ecosystem of software development kits allows porting solutions 

based on three-factor learning to the dedicated hardware. 125

LIMITATIONS AND CHALLENGES

Despite significant progress in three-factor learning for SNNs, 

several limitations and challenges remain. These challenges 

span theoretical, computational, and practical aspects and affect 

the scalability, biological plausibility, and real-world applicability 

of current models. The primary concerns include the following.

(1) Simplified neuron models and network structures: many 

studies use simplified neuron models, such as the 

Hodgkin-Huxley model, leaky integrate-and-fire models, 

or Izhikevich models. 13,102 These models often lack the 

biological diversity and complexity of real neurons, 

including a limited diversity of receptor actions, simplified 

neuron morphologies, and a lack of detailed modeling of 

cellular processes. 36,100 Furthermore, network structures 

are often simplified, with limited spatial connectivity and 

inter-columnar connections, and sometimes consist of 

only a few layers. 2,19 These simplifications can limit the 

generalizability of the findings and their applicability to 

real biological systems. 7,11

(2) Lack of real-world testing and global error propagation: a 

significant number of studies rely on simulations and syn-

thetic datasets, 4,47 with a lack of real-world testing and 

empirical validation. 1,41 Some models are tested in simple 

simulated environments and on simplified tasks, which 

limits their real-world applicability. 20,90 Furthermore, 

many models lack a clear mechanism for global error 

propagation, which is crucial for complex learning 

tasks. 35,39 Although some papers address credit assign-

ment, most models do not fully implement it. 15,35 Some 

models use simplified or indirect forms of supervision 

that may not be sufficient for complex tasks. 3,22

(3) Parameter tuning and scalability challenges: many 

models require careful parameter tuning for optimal per-

formance, 5,6,49 and their performance can be sensitive 

to parameter choices. 21,103 Furthermore, many models 

have limited scalability and are not tested on large-scale 

networks or complex tasks. 14,83 Some models have 

high computational costs, which can limit their applica-

bility. 16,29 Although some studies show scalability to 

some extent, they often highlight limitations when applied 

to more complex scenarios. 37,66 There is also a need for 

more efficient algorithms that can scale to larger and 

more complex networks. 12,42
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FUTURE DIRECTIONS

Three-factor learning in SNNs presents exciting opportunities 

to bridge biological plausibility and ML efficiency. Future 

research should focus on optimizing neuromodulatory mecha-

nisms for improved credit assignment, enhancing scalability for 

large networks, and integrating three-factor learning with mod-

ern deep learning frameworks. In addition, efforts should be 

made to validate these models with real-world data and neuro-

morphic hardware to enable practical applications in AI, ro-

botics, and cognitive computing. Cross-disciplinary collabora-

tions will be essential in refining learning rules and expanding 

their applicability.

Research opportunities

Several sources highlight areas for improvement in the field of 

neuromodulation and plasticity in neural networks. A key chal-

lenge is to improve the scalability of current models. Many 

studies use simplified models and simulated data, and it is 

necessary to extend these models to larger, more complex net-

works and real-world datasets. 5,6,47,90 For example, while some 

models demonstrate scalability to a certain extent, they often 

note limitations when applied to more complex scenarios or 

real-world data. 4,8 Another key research area involves the explo-

ration of novel learning rules and architectures. Many studies 

introduce new learning methods or variations on existing ones, 

such as STDP, but these often require further validation and 

testing in diverse contexts. 8,10,21 For example, some studies pro-

pose new three-factor learning methods, 11,62 while others 

explore different ways to modulate STDP. 12,36 There is also a 

need to better understand how neuromodulators can be used 

for credit assignment in deep networks. 17,18,39 Some studies 

suggest that neuromodulators can act as a third factor in Heb-

bian learning, but the specific mechanisms and implementation 

details need further exploration. 15,35,62 Finally, the validation of 

computational models with experimental data is crucial. Many 

studies rely on simulations and lack direct empirical valida-

tion. 32,34,126 Future research should focus on bridging the gap 

between theoretical models and experimental findings. 7,16,46

Interdisciplinary approaches

The sources strongly suggest that interdisciplinary collaboration 

is essential for progress in this field. The most successful studies 

often involve teams from diverse backgrounds, including 

neurobiology, ML, computer science, and robotics. 23,90,127 By 

combining expertise from different fields, researchers can gain 

a more comprehensive understanding of the complex interac-

tions between neuromodulation, plasticity, and learning. 1,79,101 

Specifically, integrating biological insights into AI and ML models 

can lead to more robust and adaptable systems. 4,27,40 For 

example, modeling the effects of neuromodulators like dopa-

mine, acetylcholine, and norepinephrine can lead to more so-

phisticated learning algorithms. 11,18,31 The study of astrocytes 

and their role in neuromodulation also opens up new avenues 

for exploration. 100 Furthermore, understanding how the brain im-

plements credit assignment, working memory, and decision-

making processes can guide the development of novel AI 

architectures. 15,33,90 In summary, the future of this field lies in 

combining cutting-edge computational techniques with a deep

understanding of biological mechanisms. By embracing interdis-

ciplinary approaches, researchers can push the limits of what is 

possible and develop more powerful and biologically plausible AI 

systems. 11,19,21

CONCLUSIONS

This review has provided an overview of three-factor learning in 

SNNs, highlighting its significance in bridging biological plausi-

bility and ML efficiency. The inclusion of neuromodulatory sig-

nals as a third factor improves credit assignment, adaptive 

learning, and long-term synaptic modifications, making SNNs 

more suitable for real-world applications. The key insights 

from this review emphasize the importance of interdisciplinary 

collaboration between neuroscience, AI, and robotics. Ad-

vances in neuromorphic computing, biologically inspired algo-

rithms, and novel encoding strategies continue to drive im-

provements in network scalability, learning efficiency, and 

cognitive modeling. Although significant progress has been 

made, challenges such as model validation with real-world 

data, scalability limitations, and computational efficiency 

remain critical research areas. Future research should focus 

on integrating three-factor learning into scalable deep learning 

frameworks, optimizing neuromodulatory mechanisms for 

more biologically plausible credit assignment, and leveraging 

neuromorphic hardware for energy-efficient processing. By 

combining theoretical models with experimental validation 

and cross-domain collaboration, researchers can further refine 

learning rules and develop robust, adaptive systems. Ulti-

mately, the future of three-factor learning lies in its ability to 

integrate insights from biological systems into AI, enabling 

more efficient, flexible, and human-like learning in neural net-

works. As the field advances, continued interdisciplinary efforts 

will be key to unlocking new possibilities in AI, cognitive 

computing, and robotics.
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